Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda ihategoto » 12/12/2019, 00:45

Salve,
sto riscontrando qualche problema a trovare una soluzione "veloce" a questo problema:

Sia V lo spazio vettoriale delle matrici 2x2 a coefficienti in R. Determinare gli autovalori e i relativi autospazi dell’endomorfismo $ f $ in V:
$ f(X)=AXA^-1 $

dove $ A=( ( 1 , 2 ),( 0 , 1 ) ) $

La soluzione più naturale che mi viene in mente è quella di considerare la matrice B associata all'applicazione lineare $ f $; ovvero quella ha come colonne:

\( B^i=F_\varepsilon (f(M_i)) \)

dove $ M_i $ è l'i-esimo vettore della base canonica di V, e \( F_\varepsilon \) è l'isomorfismo che associa un vettore di $ R^4 $ alla matrice.
Una volta trovata questa matrice risulta facile trovare gli autovalori e i corrispondenti autovettori, chiaramente restando sempre nello spazio isomorfo.
Quello che mi chiedo è: esiste una soluzione meno laboriosa e possibilmente più elegante?

Grazie in anticipo per la risposta.
Ultima modifica di ihategoto il 12/12/2019, 15:01, modificato 2 volte in totale.
ihategoto
Starting Member
Starting Member
 
Messaggio: 4 di 12
Iscritto il: 11/11/2019, 18:23

Re: Ricerca autovetture e autospazi di un'applicazione lineare

Messaggioda Sergio » 12/12/2019, 01:00

A me non pare. E non solo perché so molto poco della ricerca di autovetture in algebra lineare :D
"Se vuoi un anno di prosperità coltiva del riso. Se vuoi dieci anni di prosperità pianta degli alberi. Se vuoi cento anni di prosperità istruisci degli uomini" (proverbio cinese). E invece... viewtopic.php?p=236293#p236293
Avatar utente
Sergio
Cannot live without
Cannot live without
 
Messaggio: 6262 di 6395
Iscritto il: 26/04/2004, 10:56
Località: Roma

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda ihategoto » 12/12/2019, 15:02

Incredibile che abbia sbagliato a scriverlo due volte su due :shock:
Ad ogni modo, grazie per la risposta.
ihategoto
Starting Member
Starting Member
 
Messaggio: 5 di 12
Iscritto il: 11/11/2019, 18:23

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda Bokonon » 12/12/2019, 15:24

Esiste un solo autospazio relativo all'autovalore 1 e di dimensione 2.
Una base di autovettori è banalmente ${A, A^(-1)}$ oppure ${I, e_2}$

Non c'è bisogno di trovare F.
Chiamiamo F la matrice associata all'applicazione lineare, allora: $FX=AXA^(-1)$
Cerchiamo degli autovettori $ V=( ( a , b ),( c , d ) ) $ perciò $FV=lambdaV=AVA^(-1)$ da cui $lambdaVA=AV$
E' già evidente che fissato $lambda=1$ e $V=A$ oppure $V=A^(-1)$ oppure $V=I=1/2(A+A^(-1))$ o infine $V=A^n$ il sistema ha soluzione...ma NON è un buon modo per provare che esistono solo due autovettori associati a $lambda=1$ e nemmeno che ha soluzione solo per $lambda=1$.

Meglio esplicitare il sistema facendo i conti e uguagliando le componenti di $lambdaVA=AV$, ovvero:
$ { ( lambdaa=a+2c ),( lambda(2a+b)=b+2d ),( lambdac=c ),( lambda(2c+d)=d ):} $
Dalla terza equazione, sia considerando $lambda=0$ oppure $lambda!=0,1$ otteniamo che $a=b=c=d=0$ e la matice nulla non è accettabile. Pertanto il sistema ha soluzione solo e unicamente per $lambda=1$.
Da cui $ V=( ( a , b ),( 0 , a ) ) =aI +be_2 $
Da qui si nota che effettivamente l'autospazio ha dimensione 2.
Volendo adesso si può notare che effettivamente anche $A, A^(-1) e A^n$ sono autovettori per $lambda=1$...ma ora sappiamo che possiamo sceglierne solo due perchè gli altri saranno sempre una loro comb. lineare (provalo!).
Ultima modifica di Bokonon il 12/12/2019, 16:08, modificato 2 volte in totale.
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1797 di 1970
Iscritto il: 25/05/2018, 20:22

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda ihategoto » 12/12/2019, 15:43

Bokonon ha scritto:Esiste un solo autospazio relativo all'autovalore 1 e di dimensione 2.
Una base di autovettori è banalmente ${A, A^(-1)}$ oppure ${I, e_2}$

Grazie per la risposta. La soluzione è identica a quella trovata attraverso il metodo da me esposto.
La mia domanda non era inerente alla soluzione ma al metodo che utilizzi per trovarla.
ihategoto
Starting Member
Starting Member
 
Messaggio: 6 di 12
Iscritto il: 11/11/2019, 18:23

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda Bokonon » 12/12/2019, 16:07

Stavo scrivendo e per sbaglio ho fatto invia. Ho modificato il messaggio precedente per completarlo.
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1798 di 1970
Iscritto il: 25/05/2018, 20:22

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda ihategoto » 12/12/2019, 17:55

Bokonon ha scritto:Stavo scrivendo e per sbaglio ho fatto invia. Ho modificato il messaggio precedente per completarlo.


Ciao ho letto ora la risposta completa. Effettivamente mi sembra meno laboriosa di quella da me elaborata, considerando che nella mia soluzione, oltre a trovare le 4 colonne della matrice associata all'applicazione lineare, avrei anche dovuto ricavare il polinomio caratteristico attraverso il determinante di una matrice 4x4.
L'unica punto non chiaro è la parte finale in cui mi chiedi di provare che posso scegliere solo 2 autovettori tra \( A, A^n \) e $ A^-1 $, non basta notare che $ A^-1 $ e $ A $ sono linearmente indipendenti?
ihategoto
Starting Member
Starting Member
 
Messaggio: 7 di 12
Iscritto il: 11/11/2019, 18:23

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda Bokonon » 12/12/2019, 18:45

ihategoto ha scritto:L'unica punto non chiaro è la parte finale in cui mi chiedi di provare che posso scegliere solo 2 autovettori tra \( A, A^n \) e $ A^-1 $, non basta notare che $ A^-1 $ e $ A $ sono linearmente indipendenti?

E come fai sapere che anche un $A^n$ con $n in ZZ$ non sia un terzo autovettore indipendente?
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1801 di 1970
Iscritto il: 25/05/2018, 20:22

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda ihategoto » 12/12/2019, 19:00

Sono tutti e tre autovettori dell'autospazio $ V_1 $ che ha dimensione due. Se pongo $ B = {A, A^-1} $ ottengo una base di $ V_1 $ e visto che $ A^n in V_1 $ $ A^n $ è combinazione lineare dei vettori della base. E' un ragionamento sbagliato?
ihategoto
Starting Member
Starting Member
 
Messaggio: 9 di 12
Iscritto il: 11/11/2019, 18:23

Re: Ricerca autovettori e autospazi di un'applicazione lineare

Messaggioda Bokonon » 12/12/2019, 22:01

E' quello che devi dimostrare.
In generale non è vero ma nel caso particolare si può dimostrare che:
$A^n=(1+n)/2A+(1-n)/2A^(-1)$ e $[A^(-1)]^n=(1-n)/2A+(1+n)/2A^(-1)$ per $n>1$
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1802 di 1970
Iscritto il: 25/05/2018, 20:22

Prossimo

Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Obidream e 16 ospiti