Aiuto su funzioni

Messaggioda giangianni » 12/12/2019, 12:29

Ciao a tutti,

apro la mia presenza sul forum con un dubbio stupido che non riesco a fugare da solo.

Studiando la derivata prima non riesco bene a capire da "dove parta a dove arrivi" la funzione derivata. Provo a spiegare..


Il punto è che la funzione che voglio derivare

f:R->R

1) mi accorgo che la funzione derivata prima potrei vederla come la funzione che associa ad ogni punto del dominio della f (iniziale) la sua derivata prima, ossia una funzione:

f': R->R
x |-> f'

2) Tuttavia potrei anche pensare che f' sia una funzione che associa alla funzione f originaria f'

f |-> f' quindi f':(dominio\insieme funzioni)->(codominio\insieme funzioni)

3) Inoltre mi sembra ancora di poterla vedere come una "composizione" infatti

derivo una prima volta x->f->f' ove compongo la funzione iniziale con la funzione derivata prima però vista al punto 2) con domini in insiemi di funzioni.

Insomma un macello e non riesco più a capire cosa sia giusto o sbagliato e non riesco a uscirne da solo.
E' giusto dire che va da R in R come al punto 1) o che va da una funzione a una funzione (derivata), o che è una composizione come al 3). Sono tutte giuste, tutte sbaglaite? Boh!

Ringrazio chi vorrà aiutarmi
giangianni
Starting Member
Starting Member
 
Messaggio: 1 di 29
Iscritto il: 12/12/2019, 12:18

Re: Aiuto su funzioni

Messaggioda gugo82 » 12/12/2019, 15:54

Sbagli sulla seconda “funzione”, cioè su $\prime$.

Infatti, come tu stesso noti, $\prime$ è un operatore (sinonimo di funzione, che si usa per non creare ripetizioni nel discorso) che ad ogni funzione derivabile $f$ associa la sua funzione derivata $f^\prime$.
Quindi il dominio di $\prime$ non è affatto l’insieme $RR$, ma la classe (altro sinonimo, questa volta di insieme) $D(RR)$ che ha per elementi tutte le funzioni definite in $RR$ ed ivi derivabili; analogamente, l’immagine $f^\prime$ è una funzione, dunque il codominio di $\prime$ è la classe $RR^RR$ delle funzioni da $RR$ in sé.
L’operatore $\prime$, perciò, è una funzione che agisce tra due insiemi di funzioni, cioè \(\prime : D(\mathbb{R}) \ni f \mapsto f^\prime \in \mathbb{R}^\mathbb{R}\).

Ora, secondo la definizione di funzione composta, la composizione $x -> f -> \prime$ ha senso? E, se lo ha, ha il senso che tu le vorresti dare?
Did you exchange
A walk on part in the war
For a lead role in a cage? (Roger Waters)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22974 di 23239
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Aiuto su funzioni

Messaggioda giangianni » 12/12/2019, 16:39

Grazie mille per la risposta. Proverò a rispondere al tuo spunto sperando di azzeccarci.

Da quanto ho appreso dalla tua spiegazione, se non vado errato, direi di no: non ha senso. Questo perché $f:R->R$ e $':D(R)->R^R$ e il dominio di $'$ non coincide col codominio $R$ della mia $f$.
giangianni
Starting Member
Starting Member
 
Messaggio: 2 di 29
Iscritto il: 12/12/2019, 12:18

Re: Aiuto su funzioni

Messaggioda gugo82 » 13/12/2019, 11:10

Appunto. :wink:
Did you exchange
A walk on part in the war
For a lead role in a cage? (Roger Waters)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22981 di 23239
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Aiuto su funzioni

Messaggioda giangianni » 14/12/2019, 10:04

Sei davvero stato molto gentile.
Ti ringrazio, alla prossima! :)

Auguri!
giangianni
Starting Member
Starting Member
 
Messaggio: 3 di 29
Iscritto il: 12/12/2019, 12:18


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Google Adsense [Bot] e 42 ospiti