sistema linerare a 3 incognite e 2 parametri

Messaggioda Nepler265 » 15/01/2020, 12:00

Salve ragazzi , ho un sistema linerare a 3 incognite e 2 parametri (h,k)....

$\{(hx - 2ky + (k-1)z = 0),((h-1)x -6y +z= 1):}$

Mi viene chiesto per quali coppie di valori il sistema ammette soluzione ed eventualmente determinarle....

Mi ricavo la matrice completa dal sistema : $((h,-2k,k-1,0),(h-1,-6,1,1))$

Da qui inizio ad avere qualche difficoltà....trovo il determinante della matrice dei coefficienti che viene $ 4k-6 $.
Ed è diverso da zero se $ k!= 3/2$ , e quindi la matrice dei coeff. Avrà rango 2 così come il rango della matrice completa ed il sistema sarà compatibile.Poi vado a ricavarmi la x,y in quanto ho due equazioni soltanto , quindi considero anche z come parametro. Va bene come ho ragionato fin qui o sbaglio qualcosa ?
Nepler265
Starting Member
Starting Member
 
Messaggio: 16 di 22
Iscritto il: 18/09/2019, 11:05

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Magma » 15/01/2020, 12:20

La matrice dei coefficienti del sistema
$ ((h,-2k,k-1,|, 0),(h-1,-6,1,| ,1)) $

è una $2\times3$: come hai fatto a calcolarne il determinante?
Magma
Senior Member
Senior Member
 
Messaggio: 1432 di 1438
Iscritto il: 03/09/2015, 13:15

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Nepler265 » 15/01/2020, 12:26

Ho considerato la sotto matrice $((-2k,k-1),(-6,1))$
Nepler265
Starting Member
Starting Member
 
Messaggio: 17 di 22
Iscritto il: 18/09/2019, 11:05

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Magma » 15/01/2020, 12:45

Nepler265 ha scritto:Ho considerato la sotto matrice $((-2k,k-1),(-6,1))$

Ok, però è improprio dire che sia il determinante della matrice dei coefficienti. :roll:

Cosa hai preso come minore di ordine $1$?
Magma
Senior Member
Senior Member
 
Messaggio: 1434 di 1438
Iscritto il: 03/09/2015, 13:15

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Nepler265 » 15/01/2020, 12:51

E' improprio perchè si potrebbero avere altri tipi di determinanti giusto ? In tal caso come dovrei muovermi ?
Al momento ho calcolato le soluzioni nel caso il rango sia $2$ ...La matrice poi avrà sempre rango almeno uguale ad $1$ dato che sono presenti il $-6$ e l'$1$ a prescindere dai valori di h e k ...o sbaglio?
Nepler265
Starting Member
Starting Member
 
Messaggio: 18 di 22
Iscritto il: 18/09/2019, 11:05

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Magma » 15/01/2020, 13:00

Nepler265 ha scritto:E' improprio perchè si potrebbero avere altri tipi di determinanti giusto ? In tal caso come dovrei muovermi ?

È improprio perché il determinante è definito per matrice quadrate $n\times n$.

Nepler265 ha scritto:Al momento ho calcolato le soluzioni nel caso il rango sia $2$ ...La matrice poi avrà sempre rango almeno uguale ad $1$ dato che sono presenti il $-6$ e l'$1$ a prescindere dai valori di h e k ...o sbaglio?

Giusto :smt023

Comunque, scegliendo come minore di ordine uno $\mu_{2,2}=-6$, oltre al minore che già hai preso in considerazione, c'è anche $ ((-2k,h),(-6,h-1)) $.
Magma
Senior Member
Senior Member
 
Messaggio: 1436 di 1438
Iscritto il: 03/09/2015, 13:15

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Nepler265 » 15/01/2020, 13:15

Quindi devo considerare 2 determinanti ...il primo che già avevo calcolato in precedenza e il determinante della matrice che scritto te...il determinante di quest'ultimo viene $2(hk-3h-k)$ in questo caso però ci sarebbero varie combinazioni di valori di h e k da considerare affinchè il determinante sia diverso da 0....
Nepler265
Starting Member
Starting Member
 
Messaggio: 19 di 22
Iscritto il: 18/09/2019, 11:05

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Magma » 15/01/2020, 13:59

Esattamente. Per semplificare i calcoli, io farei prima il caso banale per $h=k=0$, poi $h\ne 0 \wedge k=0$, quindi $h=0 \wedge k\ne 0$ e infine $k\ne 0\wedge h\ne 0$.
Magma
Senior Member
Senior Member
 
Messaggio: 1437 di 1438
Iscritto il: 03/09/2015, 13:15

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Bokonon » 15/01/2020, 14:50

Nepler265 ha scritto:Mi viene chiesto per quali coppie di valori il sistema ammette soluzione ed eventualmente determinarle....
......
Ed è diverso da zero se $ k!= 3/2$

Ti conviene trovare le coppie per cui il sistema NON ha soluzione.

Ciò a cui miri è che il rango della matrice 2x3 sia pari ad 1 (mentre in tutti gli altri casi avrà sempre rango 2).
Ovvero due colonne a piacere devono essere combinazione solo della terza.
Ergo il determinante di due colonne scelte a piacere deve essere =0.

Sei partito dal minore migliore che ti ha consentito di individuare immediatamente $k=3/2$
Sostituiscilo e poni a zero il determinante della prima colonna con una delle altre due..e troverai $h=-1$

Ora se una volta sostituiti k e h trovassi che tutte le colonne sono del tipo (0,a) allora il sistema avrebbe infinite soluzioni per questi due valori e una sola soluzione per qualsiasi altra coppia. Ma questo non accade.

Invece accade che per $h=-1$ e $k=3/2$ la matrice ha rango 1 e tutte le colonne sono del tipo $alpha*(a,b)$ e per nessun valore di $alpha$ possiamo ottenere (0,1), quindi il sistema non ha soluzione.
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1922 di 1994
Iscritto il: 25/05/2018, 20:22

Re: sistema linerare a 3 incognite e 2 parametri

Messaggioda Nepler265 » 15/01/2020, 23:29

Capito, potresti spiegarmi perchè "tutte le colonne sono del tipo $α⋅(a,b)$ e per nessun valore di $α$ possiamo ottenere$ (0,1)$" ?
Nepler265
Starting Member
Starting Member
 
Messaggio: 20 di 22
Iscritto il: 18/09/2019, 11:05

Prossimo

Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Sergio e 27 ospiti