esercizio integrale triplo

Messaggioda cri98 » 21/01/2020, 18:32

ciao ragazzi,
ho un problemino con il capire l'integrale triplo:
$ int int int_(v)^()y^2 dv $
$ v={(x,y,z):3y>=sqrt(x^2+z^2), 0<=y<=1} $

non riesco a capire come devo trattare il dominio (cosa rappresenta$ 3y>=sqrt(x^2+z^2)$
se ad esempio elimino la radice ottengo:
$ 3y>=sqrt(x^2+z^2)$

$ (3y)^2=x^2+z^2$

$ 9y^2=x^2+z^2$

grazie!
cri98
Junior Member
Junior Member
 
Messaggio: 333 di 366
Iscritto il: 30/04/2018, 16:18

Re: esercizio integrale triplo

Messaggioda Mephlip » 21/01/2020, 19:53

Si tratta di un cono avente asse di simmetria l'asse $y$, lo puoi vedere perché la distanza dall'asse $y$ (ossia $\sqrt{x^2+z^2}$) varia linearmente in $y$.
Mephlip
Average Member
Average Member
 
Messaggio: 607 di 700
Iscritto il: 03/06/2018, 23:53

Re: esercizio integrale triplo

Messaggioda pilloeffe » 23/01/2020, 02:57

Ciao cri98,

L'insieme $v $ si può riscrivere nel modo seguente:

$v = {(x,y,z) \in \RR^3 : y >= h/R \sqrt(x^2+z^2), 0 <= y <= h} $

ove $h = 1 $ è l'altezza del cono, $R = 3 $ il suo raggio di base. Per risolvere l'integrale proposto si consigliano caldamente le coordinate cilindriche seguenti:

${(x = \rho cos\theta),(y = y), (z = \rho sin\theta):} $
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3501 di 3706
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: esercizio integrale triplo

Messaggioda cri98 » 23/01/2020, 12:30

ciao pilloeffe,
ho provato ad impostare l'integrale, va bene o è completamente errato?
Grazie
$ intintinty^2dv= $
$ int_(0)^(h) (int_(0)^(2pi ) int_(0)^(h/Rsqrt(x^2+z^2))y^2rho drhodvartheta ))= $
cri98
Junior Member
Junior Member
 
Messaggio: 334 di 366
Iscritto il: 30/04/2018, 16:18

Re: esercizio integrale triplo

Messaggioda pilloeffe » 23/01/2020, 14:34

cri98 ha scritto:ho provato ad impostare l'integrale, va bene o è completamente errato?

La seconda che hai detto... :wink:
Si ha:

$\int \int \int_v y^2 \text{d}v = \int_0^{2\pi} \text{d}\theta \int_0^R \rho \text{d}\rho \int_{h/R \rho}^h y^2 \text{d}y $
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3502 di 3706
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: esercizio integrale triplo

Messaggioda cri98 » 23/01/2020, 15:54

:smt023 :smt023
$ \int \int \int_v y^2 \text{d}v = \int_0^{2\pi} \text{d}\theta \int_0^R \rho \text{d}\rho \int_{h/R \rho}^h y^2 \text{d}y $
ottengo:
$ \int \int \int_v y^2 \text{d}v = \int_0^{2\pi} \text{d}\theta \int_0^R \rho \text{d}\rho[y^3/3]_(h/Rrho)^(h)= \text $
$ \int \int \int_v y^2 \text{d}v = \int_0^{2\pi} \text{d}\theta \int_0^R \rho \text{d}\rho[h^3/3-(h^3/R^3rho^3)/3]= $
dopo qualche passaggio ottengo:
$ int_(0)^(2pi)h^3/3[rho^2/2]_(0)^(R)-h^3/(3r^3)[rho^5/5]_(0)^(R)d(theta)= $
$ [(h^3R^2)/6theta-h^3R^5/(15R^3)theta]_(0)^(2pi)= $
$ [(h^3R^2)/6(2pi)-h^3R^5/(15R^3)(2pi)]= $
è corretto?
come proseguo?
cri98
Junior Member
Junior Member
 
Messaggio: 335 di 366
Iscritto il: 30/04/2018, 16:18

Re: esercizio integrale triplo

Messaggioda pilloeffe » 23/01/2020, 23:44

cri98 ha scritto:è corretto?

Sì, ma perché hai la tendenza a complicarti la vita?
Semplicemente si ha:

$ \int \int \int_v y^2 \text{d}v = \int_0^{2\pi} \text{d}\theta \int_0^R \rho \text{d}\rho \int_{h/R \rho}^h y^2 \text{d}y = 2\pi \int_0^R [h^3/3 \rho - h^3/(3R^3) \rho^4] \text{d}\rho = 2\pi[h^3 \rho^2/6 - [h^3 \rho^5)/(15 R^3)]_0^R = $
$ = 2\pi[h^3 R^2/6 - [h^3 R^2)/15] = 1/5 \pi h^3 R^2 $

Naturalmente l'integrale inizialmente proposto si ottiene considerando $h = 1 $ e $R = 3 $, per cui risulta $9/5 \pi $.

Come ulteriore esercizio potresti provare a calcolare il volume del cono di altezza $h$ e raggio di base $R$:

$\int\int\int_V \text{d}x \text{d}y \text{d}z $

ove $V = {(x,y,z) \in \RR^3 : y >= h/R \sqrt(x^2+z^2), 0 <= y <= h} $
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3504 di 3706
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: esercizio integrale triplo

Messaggioda cri98 » 24/01/2020, 17:35

ciao pilloeffe
grazie per il tuo aiuto

lo svolgimento mi è chiaro, l'unica cosa non chiara sono gli estremi di integrazioni di $rho$ e di $y$.
per ricavare $h/R rho $ sostituisco con le coordinate cilindriche all'interno del dominio come deduco l'estremo di integrazione h?
grazie
cri98
Junior Member
Junior Member
 
Messaggio: 336 di 366
Iscritto il: 30/04/2018, 16:18

Re: esercizio integrale triplo

Messaggioda pilloeffe » 24/01/2020, 19:00

cri98 ha scritto:grazie per il tuo aiuto

Prego.
cri98 ha scritto:l'unica cosa non chiara sono gli estremi di integrazioni di $\rho $ e di $y$

Perché non hai fatto un disegno per renderti conto della situazione: prova a fare il disegno del cono con vertice nell'origine $O(0,0,0) $ avente asse $y$, altezza $h$ e raggio di base $R$. Osserva che nel piano $xy$ la retta che genera il cono con una rotazione completa attorno all’asse $y$ ha equazione $y = h/R x $: per $x = 0 $ si ottiene $y = 0$ e quindi si ritrova l'origine, per $x = R $ si ottiene $y = h $.
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3512 di 3706
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: esercizio integrale triplo

Messaggioda cri98 » 25/01/2020, 15:59

ciao pilloeffe,
grazie per la risposta, adesso mi è molto più chiaro.
ho provato a risolvere un esercizio simile:
$ intintint_(v)x^3dV $ dove $ V={(x,y,z):2x>=sqrt(y^2+z^2), 0<=x<=1}$
1)$ 4/3pi $
2)$ 2pi $
3)$ 8/3pi $
4)$ 2/3pi $

in questo caso considero l'asse di simmetria l'asse x
il dominio diventa:
$ V={(x,y,z):x>=R/hsqrt(y^2+z^2), 0<=x<=R}$
considero le coordinate cilindriche
$ int_(0)^(2pi)int_(0)^(h)rho drho int_(R/hrho)^(R)x^3 dx$
$ { ( x=x ),( y=rhosentheta ),( z=rhocostheta ):} $
svolgendo i calcoli ottengo:
$ 2/3 pi$
il procedimento è corretto?
Grazie
cri98
Junior Member
Junior Member
 
Messaggio: 337 di 366
Iscritto il: 30/04/2018, 16:18

Prossimo

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Mephlip, universo e 27 ospiti