Teoria di Galois polinomio di 3 grado

Messaggioda francicko » 13/02/2020, 13:47

Nel polinomio generico di 2 grado $x^2+bx+c$ ho che il suo gruppo di Galois è $S_2$,ed avremo $Q(sqrt(Delta)) $ come campo di spezzamento, quindi avremo la corrispondenza $Q->S_2$ed $Q(sqrt(Delta)) ->(e)$, ;
Nel caso di un polinomio generico di terzo grado, avente quindi come gruppo di Galois $S_3$, quale sarà la corrispondenza?
"Anche una sola ingiustizia minaccia la giustizia di tutti."

"Martin Luther King"
francicko
Senior Member
Senior Member
 
Messaggio: 1380 di 1381
Iscritto il: 14/06/2009, 21:02
Località: Trieste-Trapani

Re: Teoria di Galois polinomio di 3 grado

Messaggioda Martino » 13/02/2020, 14:13

Formalmente c'è un dettaglio da correggere: il campo di spezzamento nel caso di grado $2$ non è $QQ(sqrt(Delta))$, è $K(sqrt(Delta))$ dove $K=QQ(b,c)$ e si intende che $b$ e $c$ sono variabili algebricamente indipendenti (altrimenti non è detto che il gruppo di Galois sia $S_2$).

Allo stesso modo per il grado $3$, diciamo che $f(X)=X^3+bX^2+cX+d$ e $K=QQ(b,c,d)$ dove $b,c,d$ sono variabili algebricamente indipendenti su $QQ$. Se $G$ è il suo gruppo di Galois su $K$ allora $G$ è isomorfo a $S_3$. Il gruppo $S_3$ contiene $3$ sottogruppi di ordine $2$ e un sottogruppo di ordine $3$. I tre sottogruppi di ordine $2$ corrispondono (tramite le corrispondenze di Galois) ai sottocampi $K(r_1)$, $K(r_2)$, $K(r_3)$ dove $r_1,r_2,r_3$ sono le radici di $f(X)$, mentre il sottogruppo di $G$ di ordine $3$ (che è isomorfo al gruppo alterno $A_3$) corrisponde al sottocampo $K(sqrt(Delta))$ dove $Delta$ è il discriminante del polinomio $f(X)$ (per la definizione di discriminante vedi qui).

Più in generale per polinomi di grado $n$ qualsiasi detto $G$ il gruppo di Galois visto come sottogruppo di $S_n$, l'intersezione $G nn A_n$ (dove $A_n$ è il gruppo alterno) corrisponde sempre a $K(sqrt(Delta))$ dove $Delta$ è il discriminante.
Le persone che le persone che le persone amano amano amano.
Avatar utente
Martino
Moderatore globale
Moderatore globale
 
Messaggio: 7562 di 7563
Iscritto il: 21/07/2007, 10:48
Località: Brasilia

Re: Teoria di Galois polinomio di 3 grado

Messaggioda francicko » 13/02/2020, 15:13

Grazie molte!
Perdona la mia ignoranza, ma il discriminante del polinomio generico di terzo grado con coeffic iente direttivo unitario non è per caso $(r_1-r_2)^2 ×(r_2-r_3)^2×(r_3-r_1)^2 $? ed apparterrebbe ad $Q(b,c)$?
È per caso una funzione simmetrica in quanto espressa in funzione dei coefficienti, in questo caso $(b, c) $, anch'essi funzioni simmetriche, e quindi invariante per ogni permutazione delle radici?
"Anche una sola ingiustizia minaccia la giustizia di tutti."

"Martin Luther King"
francicko
Senior Member
Senior Member
 
Messaggio: 1381 di 1381
Iscritto il: 14/06/2009, 21:02
Località: Trieste-Trapani

Re: Teoria di Galois polinomio di 3 grado

Messaggioda Martino » 14/02/2020, 12:39

francicko ha scritto:Perdona la mia ignoranza, ma il discriminante del polinomio generico di terzo grado con coeffic iente direttivo unitario non è per caso $(r_1-r_2)^2 ×(r_2-r_3)^2×(r_3-r_1)^2 $?

ed apparterrebbe ad $Q(b,c)$?

È per caso una funzione simmetrica in quanto espressa in funzione dei coefficienti, in questo caso $(b, c) $, anch'essi funzioni simmetriche, e quindi invariante per ogni permutazione delle radici?
E' un'espressione invariante per ogni permutazione delle radici, e per questo motivo appartiene al campo dei coefficienti $K=QQ(b,c)$.
Le persone che le persone che le persone amano amano amano.
Avatar utente
Martino
Moderatore globale
Moderatore globale
 
Messaggio: 7563 di 7563
Iscritto il: 21/07/2007, 10:48
Località: Brasilia


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti