Risoluzione di una EDO con trasformata di Laplace

Messaggioda astrolabio95 » 15/02/2020, 20:22

Salve a tutti,

sono dinanzi al seguente problema di Cauchy

$ { ( y''+2y'+2y=e^(-x) ),( y(0)=2), (y'(0) =0):} $

Vado a trasformare ed ottengo

$ Y(s) = (2s^2+6s+5)/((s+1)(s^2+2s+2) $

che ho riscritto come

$ Y(s) = (2s^2+6s+5)/((s+1)(s+1-i)(s+1+i) $

Adesso mi chiedo se fosse possibile manipolare un po' questa espressione per ricondurmi alla trasformata di seno e coseno, senza passare per i fratti semplici o i residui.

Grazie
astrolabio95
Junior Member
Junior Member
 
Messaggio: 141 di 146
Iscritto il: 27/11/2015, 19:39

Re: Risoluzione di una EDO con trasformata di Laplace

Messaggioda pilloeffe » 16/02/2020, 02:04

Ciao astrolabio95,

Beh no, riscrivila così:

$ Y(s) = (2s^2+6s+5)/((s+1)(s^2+2s+2)) = 1/(s + 1) + (s + 3)/(s^2+2s+2) = 1/(s + 1) + ((s + 1) + 2)/((s+1)^2 + 1) = $
$ = 1/(s + 1) + (s + 1)/((s+1)^2 + 1) +2/((s+1)^2 + 1) $

Antitrasformando si ha:

$y(t) = e^{-t} + e^{-t} cos t + 2 e^{-t} sin t = e^{-t}(2 sin t + cos t + 1) $
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3613 di 3821
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: Risoluzione di una EDO con trasformata di Laplace

Messaggioda astrolabio95 » 16/02/2020, 09:37

Ciao ti ringrazio per la risposta.

Unica cosa che riesco a capire poco è la decomposizione del numeratore in quelle due quantità
astrolabio95
Junior Member
Junior Member
 
Messaggio: 142 di 146
Iscritto il: 27/11/2015, 19:39

Re: Risoluzione di una EDO con trasformata di Laplace

Messaggioda astrolabio95 » 16/02/2020, 11:21

Credo di aver capito, si tratta di una fattorizzazione, giusto?

Tipo

$ A/(s+1) + (Bs+C)/(s^2+2s+2) $

e poi si usa il criterio di uguaglianza dei polinomi
astrolabio95
Junior Member
Junior Member
 
Messaggio: 143 di 146
Iscritto il: 27/11/2015, 19:39

Re: Risoluzione di una EDO con trasformata di Laplace

Messaggioda pilloeffe » 16/02/2020, 11:24

astrolabio95 ha scritto:Ciao ti ringrazio per la risposta.

Prego.
astrolabio95 ha scritto:Unica cosa che riesco a capire poco è la decomposizione del numeratore in quelle due quantità

Beh, si tende a decomporre in modo da ottenere fratti di cui sia ben nota l'antitrasformata: puoi dare un'occhiata ad esempio alla tabella che compare qui.
astrolabio95 ha scritto:Tipo

$A/(s+1)+(Bs+C)/(s^2+2s+2)$

e poi si usa il criterio di uguaglianza dei polinomi

Yesss... :smt023
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3615 di 3821
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: Risoluzione di una EDO con trasformata di Laplace

Messaggioda astrolabio95 » 16/02/2020, 11:33

Grazie ancora, mi è tutto chiarissimo
astrolabio95
Junior Member
Junior Member
 
Messaggio: 144 di 146
Iscritto il: 27/11/2015, 19:39


Torna a Analisi superiore

Chi c’è in linea

Visitano il forum: Nessuno e 49 ospiti