Base dell'Intersezioni di sottospazi vettoriali

Messaggioda Matteo3213d » 25/03/2020, 19:50

Buonasera,
Il professore, con questo esempio, ci ha spiegato come ricavare una base di $ VnnW $, dove V e W sono due sottospazi vettoriali.

$ V = span([ ( 1 ),( 1 ),( 1 ),( 1 ) ];[ ( 1 ),( -1 ),( 1 ),( -1 ) ] ) $, $ W = span([ ( 1 ),( 0 ),( 1 ),( 0 ) ];[ ( 1 ),( 2 ),( 0 ),( 2 ) ] ) $

$ V:[ ( 1 , 1 , x_1 ),( 1 , -1 , x_2 ),( 1 , 1 , x_3 ),( 1 , -1 , x_4 ) ] $ e Applicando Gauss viene: $ [ ( 1 , 1 , x_1 ),( 0, -2 , x_2-x_1 ),( 0 , 0 , x_3-x_1 ),( 0 , 0 , x_4-x_2 ) ] $

Stessa cosa per W:

$ W:[ ( 1 , 1 , x_1 ),( 0 , 2 , x_2 ),( 0 , 0 , x_3-x_1+x_2/2 ),( 0 , 0 , x_4-x_2 ) ] $

Da W e V ottengo il seguente sistema:
$ { ( x_3-x_1=0 ),( x_4-x_2=0 ),( x_3-x_1 +x_2/2=0),( x_4-x_2=0 ):} $

$ { ( x_1 = x_3 ),( x_2=0 ),(x_3= x_1),( x_4=0):} $

Quindi, $ Vnn W={lambda w_1: lambda in R} $

In particolare, non ho capito il passaggio che mi porta dall'ultimo sistema alla base di $ VnnW $.
Matteo3213d
Starting Member
Starting Member
 
Messaggio: 29 di 29
Iscritto il: 14/10/2019, 15:25

Re: Base dell'Intersezioni di sottospazi vettoriali

Messaggioda kaspar » 25/03/2020, 22:41

Allora... Mai vista una cosa fatta così, ma ti posso dire che viene dall'ultimo sistema, dove ti si dice: l'intersezione è fatta delle \(4\)-uple \(\left(\begin{smallmatrix}\lambda \\ 0 \\ \lambda \\ 0\end{smallmatrix}\right)\), con \(\lambda \in \mathbb R\), cioè con la prima e la terza entrata uguali e le altre nulle.
kaspar
New Member
New Member
 
Messaggio: 87 di 93
Iscritto il: 17/11/2019, 09:58


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 14 ospiti