Re: esercizio funzione in 2 variabili con parametro

Messaggioda gugo82 » 26/03/2020, 23:53

E quindi che cosa vogliono dire questi teoremi?

Raccontati così sembrano solo delle regole di calcolo, ma sotto c'è qualcosa di più: cosa?
Did you exchange
A walk on part in the war
For a lead role in a cage? (Roger Waters)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23549 di 23969
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: esercizio funzione in 2 variabili con parametro

Messaggioda Aletzunny » 27/03/2020, 08:08

sono domande "strane" a cui davvero non mi ero mai posto la questione.

sotto questi teoremi direi che c'è il fatto che l'operatore derivate è lineare e dunque rispetta le operazioni.Altro non mi viene in mente pur avendoci ragionato abbastanza.
Aletzunny
Senior Member
Senior Member
 
Messaggio: 922 di 1031
Iscritto il: 27/11/2017, 18:20

Re: esercizio funzione in 2 variabili con parametro

Messaggioda gugo82 » 27/03/2020, 18:10

Aletzunny ha scritto:sono domande "strane" a cui davvero non mi ero mai posto la questione.

Non sono domande "strane", sono domande di senso.

In realtà queste domande te le sei già poste e ci hai già trovato una risposta... Il problema è che hai risposto nel solo modo in cui ti è stato possibile, cioè quello evidenziato qualche post fa: quei teoremi sono solo regole di calcolo (col sottinteso: tanto la Matematica è solo una caterva di tecniche di calcolo1).

Tuttavia, il senso di quei teoremi è un altro.
Non volendo arrivare fino a questo punto:

Aletzunny ha scritto:sotto questi teoremi direi che c'è il fatto che l'operatore derivate è lineare e dunque rispetta le operazioni. Altro non mi viene in mente pur avendoci ragionato abbastanza.

che è già troppo astratto2, mi fermerei sull'enunciato più semplice, cioè quello del:

Teorema di Derivabilità della Somma:

Siano $I sube RR$ un intervallo aperto ed $f,g:I -> RR$.
Se $f$ e $g$ sono derivabili in $x_0 in I$, allora anche la funzione $f+g$ è derivabile in $x_0$ e risulta:

$[f+g]^\prime (x_0) = f^\prime (x_0) + g^\prime (x_0)$.

Dunque, se $f$ e $g$ sono derivabili in tutto $I$, allora anche $f+g$ è derivabile in tutto $I$ e risulta:

$[f+g]^\prime (x) = f^\prime (x) + g^\prime (x)$ per ogni $x \in I$.

La parte importante di questo enunciato non è, come può sembrare, la regola di calcolo della derivata (cioè $[f+g]^\prime (x) = f^\prime (x) + g^\prime (x)$), ma le affermazioni:
Se $f$ e $g$ sono derivabili in $x_0 in I$, allora anche la funzione $f+g$ è derivabile in $x_0$ [...]

se $f$ e $g$ sono derivabili in tutto $I$, allora anche $f+g$ è derivabile in tutto $I$ [...]

che stabiliscono un nesso tra la derivabilità degli addendi e la derivabilità della loro somma (asserendo che la derivabilità dei primi è condizione sufficiente alla derivabilità della seconda3).

Se ci fai caso, ogni teorema sulle "operazioni con le derivate" (nome orrendo, ma rende l'idea del tipo di teoremi cui mi riferisco) fa il gioco di cui sopra: stabilisce condizioni sufficienti per la derivabilità di funzioni che si ottengono facendo le usuali operazioni (somma, differenza, prodotto, rapporto, composizione) tra due o più funzioni derivabili.

Questo, unito alle note proprietà di derivabilità delle funzioni elementari di base (potenze, esponenziali, logaritmi, trigonometriche, trigonometriche inverse, etc...), ti fornisce un criterio per stabilire a priori, cioè senza svolgere il calcolo, che:

Ogni funzione elementare definita in un intervallo è derivabile nei punti interni di tale intervallo.

Infatti, una funzione elementare è, per definizione, o una funzione elementare di base, oppure una funzione che si ottiene da funzioni elementari di base mediante un numero finito di somme, differenze, prodotti, rapporti o composizioni.

Quindi, ad esempio, la funzione $ sin sqrt{e^x + log^2 x} $, che ha per dominio l'intervallo $]0,+oo[$, è certamente derivabile in $]0,+oo[$ perché è una funzione elementare (i.e., ottenuta mediante un numero finito di somme, differenze, prodotti, rapporti o composizioni di funzioni elementari di base)... Lo stesso dicasi per tutte le altre funzioni proposte da me in questo thread.

Dopo questo lungo OT, torniamo IT.
Quali legami ha quanto finora detto con le funzioni di due variabili?
Perché la tua funzione di due variabili è differenziabile nei punti "non problematici"?

Note

  1. Sottinteso che, a te come a molti altri, deriva da un approccio infelice alla materia avuto durante le scuole.
  2. Parli di operatore di derivazione, ma se ti chiedessi di definire bene di cosa si tratta probabilmente ti troveresti in difficoltà.
  3. La condizione non è affatto necessaria, però... Sai trovare un controesempio?
Did you exchange
A walk on part in the war
For a lead role in a cage? (Roger Waters)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23551 di 23969
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: esercizio funzione in 2 variabili con parametro

Messaggioda Aletzunny » 27/03/2020, 19:21

messaggio davvero interessante e difficile da trovare...cioè vede le derivate in un modo "diverso" e staccato dal solo calcolo.
curiosità mia.Insegna in uni?

detto questo la funzione data è un funzione elementare che presenta somme, prodotti ed elevamenti a potenza e dunque penso valga un ragionamento simile a quello fatto nel post sopra.
Aletzunny
Senior Member
Senior Member
 
Messaggio: 923 di 1031
Iscritto il: 27/11/2017, 18:20

Re: esercizio funzione in 2 variabili con parametro

Messaggioda gugo82 » 28/03/2020, 13:45

Aletzunny ha scritto:messaggio davvero interessante e difficile da trovare...

Grazie.

Aletzunny ha scritto:cioè vede le derivate in un modo "diverso" e staccato dal solo calcolo.

Come dovrebbe essere: infatti, qui in Italia studiamo Analisi Matematica, non Calculus.

Aletzunny ha scritto:curiosità mia: insegni in uni?

Ho insegnato Analisi I agli ingegneri per quattro anni, ho tenuto esercitazioni di Metodi e di Analisi I e II per cinque anni... Ora insegno Matematica al liceo scientifico (biennio).

Aletzunny ha scritto:detto questo la funzione data è un funzione elementare che presenta somme, prodotti ed elevamenti a potenza e dunque penso valga un ragionamento simile a quello fatto nel post sopra.

E già...
Did you exchange
A walk on part in the war
For a lead role in a cage? (Roger Waters)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23553 di 23969
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Precedente

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Daken97, Mephlip e 13 ospiti