omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda cianfa72 » 01/04/2020, 14:30

Ciao a tutti,

in ambito delle nozioni introduttive topologiche, fissati 2 spazi $A$ e $B$ ciascuno dotato della propria topologia, non mi e' chiara la differenza tra l'essere localmente omeomorfi piuttosto che esista un omeomorfismo locale tra i due.

Grazie :D
cianfa72
Starting Member
Starting Member
 
Messaggio: 35 di 44
Iscritto il: 02/09/2009, 11:05
Località: Roma

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda vict85 » 01/04/2020, 17:00

Che la seconda è la definizione della prima. O per lo meno nei libri che ho studiato io. Come hai definito l'essere localmente omeomorfi?
vict85
Moderatore
Moderatore
 
Messaggio: 10112 di 10133
Iscritto il: 16/01/2008, 00:13
Località: Berlin

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda cianfa72 » 01/04/2020, 18:05

vict85 ha scritto:Che la seconda è la definizione della prima. O per lo meno nei libri che ho studiato io. Come hai definito l'essere localmente omeomorfi?

essere localmente omeomorfi: per ogni $x in A$ esiste un intorno di $A$ (un sottoinsieme aperto di $A$) omeomorfo ad un aperto di $B$
cianfa72
Starting Member
Starting Member
 
Messaggio: 36 di 44
Iscritto il: 02/09/2009, 11:05
Località: Roma

Messaggioda j18eos » 01/04/2020, 18:28

Sparo!

Essere localmente omeomorfi significa ciò che hai scritto, ovvero per ogni \(\displaystyle x\in A\) esiste un intorno di \(\displaystyle A\) (un sottoinsieme aperto di \(\displaystyle A\)) omeomorfo ad un aperto di \(\displaystyle B\).

L'esistenza di un omeomorfismo locale significa che esistono un \(\displaystyle x\in A\) e un intorno di \(\displaystyle A\) (un sottoinsieme aperto di \(\displaystyle A\)) omeomorfo ad un aperto di \(\displaystyle B\).
Ipocrisìa e omofobìa,
fuori da casa mia!

Semplicemente Armando. ;)
Avatar utente
j18eos
Cannot live without
Cannot live without
 
Messaggio: 6655 di 6743
Iscritto il: 12/06/2010, 15:27
Località: Napoli, ed ogni tanto a Trieste ^_^

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda cianfa72 » 01/04/2020, 19:27

Citando quanto al link wiki ad esempio:

"If there is a local homeomorphism from X to Y, then X is locally homeomorphic to Y, but the converse is not always true. For example, the two dimensional sphere, being a manifold, is locally homeomorphic to the plane $R^2$ but there is no local homeomorphism between them (in either direction)."
cianfa72
Starting Member
Starting Member
 
Messaggio: 37 di 44
Iscritto il: 02/09/2009, 11:05
Località: Roma

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda arnett » 01/04/2020, 22:06

Ma se ne era parlato recentemente in un topic che non trovo più. Per intorni intendo sempre aperti.

Un omeomorfismo locale $f: X \to Y$ è una mappa (a priori non necessariamente continua) tale che per ogni $x \in X$ esistano intorni $U_x$ e $V_{f(x)}$ tale che $f|_{U_x} : U_x \to V_{f(x)$ sia omeomorfismo.

Invece $X$ è localmente omeomorfo a $Y$ se per ogni $x \in X$ esistono intorni $U_x, V_{f(x)}$ e un omeomorfismo $g_x:U_x \to V_y$.

La differenza sta nel fatto che la $g$ della seconda definizione non è tenuta ad essere definita su tutto $X$, ma solo su un suo aperto. Per stabilire omeomorfismi tra intorni diversi in $X$ potresti avere bisogno di funzioni diverse (al limite, una $g_x$ per ogni $x \in X$). Invece se sai di avere un omeomorfismo locale $f$ come nella prima definizione, la seconda è automaticamente soddisfatta prendendo $g_x=f|_{U_x}$. Quindi la prima condizione è più restrittiva della seconda.
"ci scruta poi gira se ne va"
arnett
Senior Member
Senior Member
 
Messaggio: 1348 di 1389
Iscritto il: 18/07/2018, 08:08

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda cianfa72 » 02/04/2020, 08:34

arnett ha scritto:Invece $X$ è localmente omeomorfo a $Y$ se per ogni $x \in X$ esistono intorni $U_x, V_{f(x)}$ e un omeomorfismo $g_x:U_x \to V_y$.

verosimilmente dovrebbe essere "...se per ogni $x \in X$ esistono intorni $U_x, V_{g(x)}$ e un omeomorfismo $g_x:U_x \to V_y$." con $U_x$ e $V_{g(x)}$ presi con la topologia di sottospazio ereditata rispettivamente da quella di $X$ e $Y$

Tornando alla definizione di omeomorfismo locale quindi è una mappa (funzione) definita totalmente -- vedi anche questo thread

Tra l'altro ritorna il fatto che una carta (chart) di una varieta' topologica e' una mappa (funzione) parziale e in generale non e' un omeomorfismo locale (il quale invece come detto richiede di essere definito totalmente)

Vi torna ?
cianfa72
Starting Member
Starting Member
 
Messaggio: 38 di 44
Iscritto il: 02/09/2009, 11:05
Località: Roma

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda arnett » 02/04/2020, 20:01

Al di là del typo mi piace poco come la ho detta: $V_{g(x)}$ non può essere un intorno di $g(x)$ se ancora non ho definito $g$...

Allora dico che $X$ è localmente omeomorfo a $Y$ se per ogni $x\in X$ esistono un intorno $U_x$, un aperto $V\subset Y$ e un omeomorfismo $g:U_x\to V$.

Comunque non vedo la ragione di questa insistenza sulle 'funzioni parziali'... Una carta è una funzione con dominio $U$, un aperto di $X$.

Ma poi perché aprire un altro thread?
"ci scruta poi gira se ne va"
arnett
Senior Member
Senior Member
 
Messaggio: 1349 di 1389
Iscritto il: 18/07/2018, 08:08

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda cianfa72 » 03/04/2020, 08:08

arnett ha scritto:Allora dico che $X$ è localmente omeomorfo a $Y$ se per ogni $x\in X$ esistono un intorno $U_x$, un aperto $V\subset Y$ e un omeomorfismo $g:U_x\to V$.

A rigore va specificata la topologia di $U_x$ e $V$ che di fatto si assume essere quella di sottospazio rispettivamente di $X$ e $Y$

arnett ha scritto:Comunque non vedo la ragione di questa insistenza sulle 'funzioni parziali'... Una carta è una funzione con dominio $U$, un aperto di $X$.

Si, in effetti non era necessario aprire un altro thread...

In ogni caso se non sfrutti la nozione di funzione parziale per definire una carta (e quindi consideri funzioni totalmente definite) devi esplicitare --almeno formalmente-- la topologia del dominio $U$ e dell'immagine (aperto di $X$) per le quali la mappa e' un omeomorfismo.
cianfa72
Starting Member
Starting Member
 
Messaggio: 39 di 44
Iscritto il: 02/09/2009, 11:05
Località: Roma

Re: omeomorfismo locale vs spazi localmente omeomorfi

Messaggioda arnett » 03/04/2020, 08:13

Beh ma la topologia che ci si mette è quella ovvia, non c'è nessun bisogno di esplicitarla.
"ci scruta poi gira se ne va"
arnett
Senior Member
Senior Member
 
Messaggio: 1352 di 1389
Iscritto il: 18/07/2018, 08:08


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 12 ospiti