Dubbi calcolo punti di max e min relativo in due variabili

Messaggioda Back_To_Uni » 17/05/2018, 15:56

Devo calcolare il massimo ed il minimo relativo della funzione
$ arctg(x^4y) $
Ho calcolato il gradiente, che si annulla per i punti (0,y).
Per tali punti l'Hessiano si annulla.
Studio quindi la funzione intorno a tali punti critici.
Considero g(x,y) = f(x,y) - f(0,y) = f(x,y) = $ arctg(x^4y) $
$ arctg(x^4y) > 0 <=> (x^4) * y > 0 <=> y > 0 $
Noto che intorno al punto (0,0) la funzione assume sia valori positivi che negativi, quindi (0,0) è un punto di sella. Per y > 0 la funzione assume valori positivi quindi per y > 0 i punti (0,y) sono di minimo relativo, mentre per y < 0 sono di massimo relativo.

Sono giuste queste considerazioni o mi sfugge qualcosa ? Visto che poi in tutti questi punti la funzione vale 0.
Back_To_Uni
Starting Member
Starting Member
 
Messaggio: 1 di 6
Iscritto il: 17/05/2018, 15:41

Re: Dubbi calcolo punti di max e min relativo in due variabili

Messaggioda TeM » 18/05/2018, 07:40

Ciao Back_To_Uni, ben iscritto!

Mi ritrovo con tutto ciò che hai scritto, ottimo! :smt023
TeM
Cannot live without
Cannot live without
 
Messaggio: 4981 di 5109
Iscritto il: 18/09/2012, 19:09

Re: Dubbi calcolo punti di max e min relativo in due variabili

Messaggioda Back_To_Uni » 18/05/2018, 11:47

TeM ha scritto:Ciao Back_To_Uni, ben iscritto!

Mi ritrovo con tutto ciò che hai scritto, ottimo! :smt023


Grazie ! Meno male ! :D
Back_To_Uni
Starting Member
Starting Member
 
Messaggio: 3 di 6
Iscritto il: 17/05/2018, 15:41


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: anto_zoolander, Google [Bot] e 48 ospiti