Studio qualitativo equazione differenziale

Messaggioda Lebesgue » 16/06/2018, 01:57

Si consideri il problema di Cauchy: $u'=(u-t)/(u+t^2+1)\ , \ u(0)=a$ [con $u$ si sottintende $u(t)$].
1) Studiare l'esistenza globale nel passato e nel futuro per $a<-1$

Si ha che $u'$ è localmente lipschitziana dove definita, quindi vi sono esistenza ed unicità locali.
Sulla retta $u(t)=t$ si ha $u'(t)=0$.
La curva $u=-1-t^2$ è quella che causa la morte delle soluzioni.
Ora se $a<-1$ vuol dire che le soluzioni sono "intrappolate" sotto la parabola.

Nel futuro (cioè per $t\ge0$) la soluzione è crescente, quindi necessariamente dovrà toccare la parabola e quindi morirà (break down)

Nel passato ($t\le0$) dico che le soluzioni non possono mai toccare la parabola, questo perchè essendo crescenti, dovrebbero toccarla con "derivata $+\infty$", cioè le soluzioni dovrebbero toccare la parabola "dall'alto". Detto meglio, bisogna verificare che $v(t)=-1-t^2-\varepsilon$ è sottosoluzione (nel passato le sottosoluzioni stanno sopra la soluzione) per $\varepsilon>0$.
Quindi, per il teorema di alternativa, nel passato le soluzioni o hanno esistenza globale con limite necessariamente $-\infty$, oppure esplodono in tempo finito a -infinito.
Il mio problema ora è quello di vedere SE esistono soluzioni che esplodono o meno.

Ringrazio in anticipo chiunque risponderà :)
Ultima modifica di Lebesgue il 16/06/2018, 16:18, modificato 3 volte in totale.
Lebesgue
New Member
New Member
 
Messaggio: 73 di 78
Iscritto il: 27/04/2018, 13:03

Re: Studio qualitativo equazione differenziale

Messaggioda gugo82 » 16/06/2018, 10:12

Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 18833 di 19418
Iscritto il: 13/10/2007, 00:58
Località: Napoli


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti