problema di Basilea

Messaggioda Simone Masini » 13/01/2019, 16:22

nel problema di Basilea per n=2 Euler dimostra che la somma della serie di Riemann è pi greco^2/6.

Ma la serie è la somma di tutti numeri razionali, anche se infiniti,quindi come fa a venire la somma un numero irrazionale come pi greco?

Moderatore: Martino

Spostato in Analisi matematica di base.
Simone Masini
New Member
New Member
 
Messaggio: 45 di 61
Iscritto il: 14/10/2017, 07:23

Re: problema di Basilea

Messaggioda fmnq » 13/01/2019, 17:59

E' una cosa che succede di continuo, non c'è niente di stupefacente. Per esempio, \(e = \sum \frac{1}{n!}\).
fmnq
Junior Member
Junior Member
 
Messaggio: 108 di 382
Iscritto il: 04/10/2017, 00:14

Re: problema di Basilea

Messaggioda Platone » 14/01/2019, 13:10

Pensa anche a questo: sia $r$ un numero reale qualsiasi (per semplicità positivo) e sia $R\in NN$ la sua parte intera e \(r_1r_2r_3...\) il suo sviluppo decimale con \(r_i\in\{0,1,...,9\}\). Allora si ha:
$$r=R+\sum_{n=1}^{\infty} r_n \cdot 10^{-n}.$$
Come vedi, ogni numero reale è quindi esprimibile come una somma infinita di numeri razionali.
Ultima modifica di Platone il 14/01/2019, 13:21, modificato 1 volta in totale.
Non ho mai conosciuto un matematico che sapesse ragionare. (Platone)
Avatar utente
Platone
Average Member
Average Member
 
Messaggio: 488 di 516
Iscritto il: 16/08/2005, 11:47

Re: problema di Basilea

Messaggioda fmnq » 14/01/2019, 13:15

Forse volevi dire che $r$ è un qualsiasi reale?
fmnq
Junior Member
Junior Member
 
Messaggio: 110 di 382
Iscritto il: 04/10/2017, 00:14

Re: problema di Basilea

Messaggioda Platone » 14/01/2019, 13:21

fmnq ha scritto:Forse volevi dire che $r$ è un qualsiasi reale?


:roll: ovviamente :wink:
Correggo il precedente post...
Non ho mai conosciuto un matematico che sapesse ragionare. (Platone)
Avatar utente
Platone
Average Member
Average Member
 
Messaggio: 489 di 516
Iscritto il: 16/08/2005, 11:47


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Google [Bot] e 26 ospiti