Derivata complessa, domanda

Messaggioda yessa » 12/02/2019, 22:16

Ho iniziato da poco lo studio di metodi e ho già un dubbio dopo la seconda lezione,

vorrei dipanare il seguente dubbio: abbiamo visto che la condizione necessaria e sufficiente perché una funzione sia derivabile in campo complesso è che siano soddisfatte le condizioni di Cauchy-Riemann per una funzione differenzialbile.

In effetti queste condizioni sono anche utili per il calcolo effettivo della derivata anzichépassare per il limite del "rapporto incrementale complesso".

Ora però se provassi a derivare $0+ia$ mi accorgo che non sono rispettate le condizioni, dovrei concludere che non è derivabile?.
Non so perché ma pensare non lo sia mi stona in qualche modo :oops:


Inoltre avrei un secondo dubbio che vorrei chiarire con voi: si è visto che per z e varie f(z) valgono in generale le regole di derivazioni in campo reale per x, tuttavia mi chiedevo, se avessi delle forme espresse come

$re^(i\theta)$ le derivo come un esponenziale normalmente? In effetti questa notazione non ci è stata dimostrata,e ancora
dato che $0+ia$ non èderivabile deduco che anche $ae^(ipi/2)$ non lo sia, ma come lo potrei capire sulla forma esponenziale senza passare a quella algebrica per poi usare C.R?
yessa
New Member
New Member
 
Messaggio: 85 di 88
Iscritto il: 19/06/2018, 20:16

Re: Derivata complessa, domanda

Messaggioda gugo82 » 13/02/2019, 23:00

Qual è la variabile complessa in $0 + i a$? Per caso la $a$?

Qual è la variabile complessa in $r e^(i theta)$? Per caso la $r$? O la $theta$?

Insomma, hai le idee un po’ confuse…
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20726 di 21217
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Derivata complessa, domanda

Messaggioda yessa » 14/02/2019, 21:20

Ti ringrazio per la risposta e spero di poterne discutere con te fino a capire bene la faccenda come sempre successo su questo forum :D :D

Forse mi sono spiegato male ma intendevo dire che la variabile complessa z poteva essere scritta nelle due forme di cui sopra: algebrica o esponenziale.
La derivata la eseguivo poi dividendo la parte reale e immaginaria sfruttando le condizioni di Cauchy-Riemann su $u(x,y)$, $v(x,y)$. con $z'=x+iy$

Dunque riprendendo i dubbi, mi pare che applicando la condizione di C.R su $w=b+ia=0+ia$ dove a ricopre la funzione di v(x,y) non sia derivabile.

Il secondo dubbio invece voleva essere questo: so che con C.R.posso capire se una funzione èderivabile in senso complesso e scrivere la derivata come $(\partialu)/(\partialx)+i(\partialv)/(\partialx)$, però se mi ritrovo con la forma esponenziale per capirne la derivabilità devo per forza passare alla forma alebrica?

Spero di essere stato più chiaro e mi scuso tanto per non esserlo stato subito.
Grazie mille gugo!
yessa
New Member
New Member
 
Messaggio: 86 di 88
Iscritto il: 19/06/2018, 20:16

Re: Derivata complessa, domanda

Messaggioda gugo82 » 14/02/2019, 22:48

yessa ha scritto:Ti ringrazio per la risposta e spero di poterne discutere con te fino a capire bene la faccenda come sempre successo su questo forum :D :D

Figurati. :wink:

yessa ha scritto:Forse mi sono spiegato male ma intendevo dire che la variabile complessa z poteva essere scritta nelle due forme di cui sopra: algebrica o esponenziale.
La derivata la eseguivo poi dividendo la parte reale e immaginaria sfruttando le condizioni di Cauchy-Riemann su $u(x,y)$, $v(x,y)$. con $z'=x+iy$

La vera verità è che le (CR) non si usano come regole di derivazione, ma come test di derivabilità.
Per derivare funzioni complesse elementari si usano le stesse regole di derivazione che sussistono nel caso reale.
Ad esempio, la derivata di $z^2$ è $2z$ o la derivata di $z$ è $1$.

Di forma algebrica o esponenziale non sai che fartene una volta che conosci le regole.

yessa ha scritto:Dunque riprendendo i dubbi, mi pare che applicando la condizione di C.R su $w=b+ia=0+ia$ dove a ricopre la funzione di v(x,y) non sia derivabile.

Certo che non lo è.
D'altra parte, se $z=x+iy$ la tua funzione $f(z)=i"Re"(z)$ si riscrive $f(z)=i (z+bar(z))/2$ e spunta fuori una dipendenza esplicita da $bar(z)$: proprio per questo $f$ non è derivabile.

yessa ha scritto:Il secondo dubbio invece voleva essere questo: so che con C.R.posso capire se una funzione èderivabile in senso complesso e scrivere la derivata come $(\partialu)/(\partialx)+i(\partialv)/(\partialx)$, però se mi ritrovo con la forma esponenziale per capirne la derivabilità devo per forza passare alla forma algebrica?

In generale sì.
Per evitare questo fatto potresti cercare di riscrivere le (CR) rispetto alle variabili $r$ e $theta$... Prova e vediamo che succede.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20746 di 21217
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Derivata complessa, domanda

Messaggioda yessa » 15/02/2019, 00:09

Grazie ora è tutto più chiaro, domani mi cimento nel provare a scrivere le C.R per r e theta come consigli. Inoltre non avevo pensato alla dipendenza dal complesso coniugato, il che giustifica bene il problema.
---------------------------
Ultime due cosette , in generale se ho la [f(z)=forma esponenziale] posso usare come regola di derivazione quella di esponenziali reali, giusto?
un po' come per z?
La vera verità è che le (CR) non si usano come regole di derivazione, ma come test di derivabilità.
Per derivare funzioni complesse elementari si usano le stesse regole di derivazione che sussistono nel caso reale.
Ad esempio, la derivata di z2 è 2z o la derivata di z è 1.


E soprattutto penso sia dimostrabile questa "estensione delle regole di derivazione", ma non saprei come e mi incurisosce molto.

Ti auguro una buona serata, e grazie mille!
yessa
New Member
New Member
 
Messaggio: 87 di 88
Iscritto il: 19/06/2018, 20:16

Re: Derivata complessa, domanda

Messaggioda gugo82 » 15/02/2019, 08:14

Dato che, come nel caso reale, hai per definizione:
\[
f^\prime (z ) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}
\]
se il limite esiste finito, le regole di derivazione delle funzioni elementari in $CC$ sono le stesse del caso reale.

Inoltre, tornando alla funzione $f(z) := i text(Re)(z)$… Tale funzione non può essere derivabile per una conseguenza delle (CR), la quale assicura che le sole funzioni derivabili ad assumere solo valori reali/solo valori immaginari puri sono le funzioni costanti.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20749 di 21217
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Derivata complessa, domanda

Messaggioda yessa » 15/02/2019, 09:56

Grazie ancora :)
yessa
New Member
New Member
 
Messaggio: 88 di 88
Iscritto il: 19/06/2018, 20:16


Torna a Analisi superiore

Chi c’è in linea

Visitano il forum: Nessuno e 4 ospiti