Potenziale generato da una distribuzione sferica

Messaggioda Nagato » 14/02/2019, 02:02

Ciao ragazzi, mi si chiede di trovare il potenziale generato in ogni punto dalla distribuzione sferica compresa tra $0$ e $R$ data da $rho(r)=ar+br^2$. Qual è il modo migliore di procedere? Usando la formula classica \(\int\rho/r dV \) ho un problema: come distinguo i casi $r<R$ e $r>R$? Ponendo gli estremi di integrazione tra $0$ e $r$ devo forse spezzare l'integrale in due, ma chiaramente per $r>R$ $rho=0$, quindi il primo integrale sarebbe nullo, e risolvendo l'integrale semplicemente ponendo gli estremi $0$ ed $R$ mi dà ovviamente un risultato costante, \(\displaystyle 4a^4/3b^3 \); non credo abbia molto senso fare così. .
Nagato
Junior Member
Junior Member
 
Messaggio: 91 di 110
Iscritto il: 08/06/2018, 21:47

Re: Potenziale generato da una distribuzione sferica

Messaggioda mgrau » 14/02/2019, 08:55

Per $r > R$ il potenziale è quello di una carica puntiforme collocata nel centro, quindi basta che ti concentri sul caso $r < R$
mgrau
Cannot live without
Cannot live without
 
Messaggio: 4543 di 4971
Iscritto il: 29/11/2016, 12:10
Località: Milano

Re: Potenziale generato da una distribuzione sferica

Messaggioda Nagato » 14/02/2019, 14:36

Effettivamente hai ragione! Allora integro da $0$ a $r$ e sono a posto.
Nagato
Junior Member
Junior Member
 
Messaggio: 96 di 110
Iscritto il: 08/06/2018, 21:47


Torna a Fisica, Fisica Matematica, Fisica applicata, Astronomia

Chi c’è in linea

Visitano il forum: dRic, jas123 e 50 ospiti