spazi di probabilità (TdM)

Messaggioda anto_zoolander » 03/04/2019, 18:14

Ciao!

studiando la probabilità condizionata ho notato che si tratta di una misura di probabilità su un sottospazio ma non trovo nulla in merito. Mi chiedevo se fosse l'unica misura che donasse ad un "evento" la struttura di spazio di probabilità(considerando la $sigma$-algebra di sottospazio).

Sapete dirmi qualcosa in merito o magari indirizzarmi su qualche testo che tratti l'argomento in questi termini?
Gli indiani già sapevano che lo scalpo fosse una varietà pettinabile :-k
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3795 di 4068
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Re: spazi di probabilità (TdM)

Messaggioda Bremen000 » 03/04/2019, 19:40

Ciao anto, la tua domanda mi ha incuriosito. Cosa intendi per probabilità su un sottospazio? Se \( (\Omega, \mathcal{A}, \mu) \) è uno spazio di probabilità e se \( B \in \mathcal{A} \) è tale che $\mu(B) >0$ allora la mappa
\[ \mathcal{A} \ni A \mapsto \mu(A \mid B) \in [0,1]\]
è una misura di probabilità su \( (\Omega, \mathcal{A} ) \).
"Nessuno riuscirà a cacciarci dal Paradiso che Cantor ha creato per noi." (Hilbert)
Bremen000
Senior Member
Senior Member
 
Messaggio: 1162 di 1209
Iscritto il: 08/09/2015, 12:16

Re: spazi di probabilità (TdM)

Messaggioda anto_zoolander » 03/04/2019, 20:34

Ciao Bremen :-D

In genere per avere uno spazio $(Omega,F,P)$ di probabilità, si deve avere $P(Omega)=1$ Ora se consideri un insieme $E in F$ e la $sigma$ algebra su $E$ definita come $F_E={EcapX,X in F}$ si può considerare lo spazio $(E,F_E,P_E)$ dove $P_E(X)=P(EcapX)$ è una misura su questo nuovo spazio.

Il problema è che questa risulta essere una misura di probabilità solo se $P(E)=1$ e cosa che in generale non è vero.
Invece la misura $P_E(X)=(P(XcapE))/(P(E))$ è una misura di probabilità in quanto $P_E(E)=1$

Detto questo mi chiedo è “questa misura ha qualche proprietà particolare?”
Gli indiani già sapevano che lo scalpo fosse una varietà pettinabile :-k
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3796 di 4068
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Re: spazi di probabilità (TdM)

Messaggioda Bremen000 » 03/04/2019, 21:43

Quello che non mi torna è che la tua nuova misura $P_E$ non "mangia" elementi di $F_E$ ma elementi di $F$, e quindi resta una misura su $(\Omega, F)$, o no?

A parte questo, quello che rilevi non mi sembra una cosa strana: quando costruisci la probabilità condizionata sostanzialmente la normalizzi per renderla una probabilità. Cioè se hai una qualsiasi misura positiva finita (non nulla), ne puoi sempre derivare una misura di probabilità normalizzandola.
"Nessuno riuscirà a cacciarci dal Paradiso che Cantor ha creato per noi." (Hilbert)
Bremen000
Senior Member
Senior Member
 
Messaggio: 1163 di 1209
Iscritto il: 08/09/2015, 12:16

Re: spazi di probabilità (TdM)

Messaggioda vict85 » 04/04/2019, 15:24

Questa è la generalizzazione di quello che dici tu per il singolo evento:
Sia \((\Omega, \Sigma, \mu)\) uno spazio misurabile finito, per esempio uno spazio di probabilità, \(\Sigma_0\) una sotto-\(\sigma\)-algebra di \(\Sigma\) e \(f\colon \Omega\to \mathbb{R}\) una funzione \(\Sigma\)-misurabile. Il valore atteso condizionato di \(f\) rispetto a \(\Sigma_0\), se esiste, è una funzione \(\Sigma_0\)-misurabile \(g\colon \Omega\to \mathbb{R}\) tale che \[\int_A f\,d\mu = \int_A g\,d\mu \quad \quad \text{per ogni } A\in \Sigma_0.\]
La notazione dipende un po' da libro a libro.

È un po' più complicata, ma c'è una ragione dietro questa complessità addizionale.
vict85
Moderatore
Moderatore
 
Messaggio: 9609 di 9745
Iscritto il: 16/01/2008, 01:13
Località: Berlin


Torna a Analisi superiore

Chi c’è in linea

Visitano il forum: Nessuno e 3 ospiti