Principio di indeterminazione generalizzato

Messaggioda Silence » 17/05/2019, 11:56

Buondì, sono alle prese col formalismo quantistico e sono incappato nel principio di indeterminazione di Heisenberg visto in chiave operatori. Ho due dubbi in proposito, il primo teorico e il secondo matematico:

1) Partendo da $sigma_Asigma_B>=1/2|<[hat(A),hat(B)]>|$ con A e B generici osservabili, il libro dice che se i due osservabili non commutano, allora non è possibile determinare entrambe le grandezze con precisione arbitraria. Questo significa che se commutano invece si può? Ma dato che due osservabili commutano se $[hat(A),hat(B)]=0$, la disequazione è la stessa per qualsiasi coppia di osservabili?
Sono certo di essermi perso per strada.

2) Sapendo che $[hat(x),hat(p)]=ihbar$, potrei chiedere a chi ne ha la pazienza di mostrarmi i passaggi che portano al risultato? Giusto per essere sicuro, il mio materiale glissa un po' sull'algebra degli operatori.

Grazie!
Silence
Junior Member
Junior Member
 
Messaggio: 177 di 180
Iscritto il: 27/06/2017, 17:37

Re: Principio di indeterminazione generalizzato

Messaggioda Andrea-.-'' » 17/05/2019, 16:53

per quanto riguarda il punto 2 se $ \[hat(x),hat(p)]=ihbar $ allora $ |<[hat(x),hat(p)]>| =| <i h/(2pi) > | = |ih/(2pi)|(psi, psi)=h/(2pi) $
Andrea-.-''
Starting Member
Starting Member
 
Messaggio: 4 di 21
Iscritto il: 26/12/2018, 14:50

Re: Principio di indeterminazione generalizzato

Messaggioda Silence » 17/05/2019, 19:53

Sì, la parte del valor medio mi era chiara, ma grazie per la conferma. In realtà per il secondo punto pensavo più a una cosa del tipo :

$[hat(x),hat(p)]=hatxhatp-hatphatx=hatx(-ibarhpartial/(partialx))- (-ibarhpartial/(partialx))hatx$

So che se ci infilo dentro una generica $f(x)$ i conti tornano, ma posso arrivarci a priori? Dire che il primo fattore è nullo perché è nulla la parentesi (non deriva nulla), il secondo è l'operatore momento che agisce su x e dunque $hatx(0)-(-ibarh) = ibarh$ è un insulto alla matematica?
Silence
Junior Member
Junior Member
 
Messaggio: 178 di 180
Iscritto il: 27/06/2017, 17:37

Re: Principio di indeterminazione generalizzato

Messaggioda Nikikinki » 18/05/2019, 09:17

1) Se due operatori commutano possono essere determinati simultaneamente, ovvero la misura di uno non influenza l'altro.

2)
Silence ha scritto:$ [hat(x),hat(p)]=hatxhatp-hatphatx=hatx(-ibarhpartial/(partialx))- (-ibarhpartial/(partialx))hatx $

So che se ci infilo dentro una generica $ f(x) $ i conti tornano, ma posso arrivarci a priori? Dire che il primo fattore è nullo perché è nulla la parentesi (non deriva nulla), il secondo è l'operatore momento che agisce su x e dunque $


Gli operatori hanno significato solo quando vengono applicati a qualcosa, altrimenti resta solo una scrittura formale. Quindi devi necessariamente "moltiplicarli" per una funzione d'onda e poi confrontare.
Nikikinki
Average Member
Average Member
 
Messaggio: 491 di 523
Iscritto il: 11/08/2017, 07:33

Re: Principio di indeterminazione generalizzato

Messaggioda Silence » 18/05/2019, 14:28

Perfetto, ti ringrazio molto, e funzione sia. Mi chiedevo... formalmente, ha senso dire che il commutatore posizione-momento è l'operatore che moltiplica una funzione per la costante $ihbar$?
Silence
Junior Member
Junior Member
 
Messaggio: 179 di 180
Iscritto il: 27/06/2017, 17:37

Re: Principio di indeterminazione generalizzato

Messaggioda Andrea-.-'' » 18/05/2019, 16:28

si
Andrea-.-''
Starting Member
Starting Member
 
Messaggio: 7 di 21
Iscritto il: 26/12/2018, 14:50

Re: Principio di indeterminazione generalizzato

Messaggioda Silence » 18/05/2019, 19:55

Ottimo, grazie!
Silence
Junior Member
Junior Member
 
Messaggio: 180 di 180
Iscritto il: 27/06/2017, 17:37


Torna a Fisica, Fisica Matematica, Fisica applicata, Astronomia

Chi c’è in linea

Visitano il forum: naturalista28 e 25 ospiti