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I Introduction 
Game theory is formally defined as “the study of mathematical models of conflict and cooperation 
between intelligent rational decision-makers” (Myerson, 2001, p. 1). One alternative definition, 
proposed “as a more descriptive name for the discipline”, is “interactive decision theory” (Aumann, 
2008, Abstract).  In other words, it is the analysis (by means of mathematical reasoning) of a conflict of 
interest to find the optimal choices for reaching the desired outcome, under given conditions. Basically, 
it is the  study of the ways to ‘win’ in a situation given certain circumstances. 
Putting its limitations to one side, game theory has been profitably applied to many situations in the 
field of economics, biology, sociology, and political sciences, to predict important trends. This paper 
aims to offer a brief, clear overview of the main aspects of game theory and its wider applications. 

II Core concepts 

i. Game and players 
The object of studying in game theory is the ‘game’, which is defined as a formal model of an 
interactive situation in which at least one agent can maximise his utility by anticipating the responses to 
his actions of one (or more) other agents.  A game normally involves several agents (which are referred 
to as ‘players’), but some require only one player (so-called ‘decision problems’). The ‘formal definition’ 
of a game offers information about the players, their preferences, the information and the strategic 
actions available to them, and their influence on the outcome. 

ii. Rationality 
The most significant (and conceivably one of the most controversial) assumption of game theory is that 
the players are ‘rational’. Players are referred to as ‘rational’ if they have precise and consistent 
preferences over the set of possible outcomes and are able to faultlessly determine and adopt the best 
available strategy to reach them.  
If taken literally, the assumption of ‘rationality’ is incontestably an unrealistic one, and – if applied to 
specific cases – it may produce results seemingly at odds with reality. Game theorists are well-aware of 
the limitations imposed by this assumption. Indeed, for this reason, there are many research groups 
studying the implications of a “less demanding form of rationality” (known as “bounded rationality”).  

iii. Move 
A ‘move’ is defined as the way in which a game progresses between states through exchange of 
information. The moves available to each player are defined by the rules of the game: they can be the 
result of a choice or made by chance; they may be made in consecutive fashion, or may occur 
concurrently for all players, or continuously for a single player until he reaches a certain state or 
declines to move further.  In particular, ‘simultaneous games’ are games where both players move 
simultaneously (or, if they do not move simultaneously, each player chooses his action without 
knowledge of the actions chosen by the other players).  On the contrary, a ‘sequential game’ is a game 
where one player chooses his action before the others choose theirs (NB: the later players must have 
some information of the first’s choice, otherwise the difference in time would have no strategic effect). 
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iv. Information 
A game is said to have ‘perfect information’ when at any point in time only one player makes a move, 
and he is aware of all the actions made until that moment. Only sequential games can be games of 
perfect information, since players in simultaneous games do not know the actions of the other players. 
However, most games studied in game theory are imperfect-information games. The concept of 
‘perfect information’ is frequently confused with the similar one of ‘complete information’: the attribute 
‘complete information’ implies that every player is aware of the strategies and the payoffs available to 
the other players, but not necessarily of the actions taken by them. 

v. Payoff 
In any game, the payoffs are numbers which represent the ‘motivations’ of players: in fact, they may 
represent profit or other continuous measures (i.e. ‘cardinal payoffs’), or may simply rank the 
desirability of the outcomes (i.e. ‘ordinal payoffs’).  

vi. Strategy 
A strategy defines a set of moves or actions a player will follow in a given game. 

vii. Dominating strategy 
A strategy ‘dominates’ another strategy if it always provides a better payoff to that player, regardless of 
the other players’ actions. A strategy is said to ‘weakly dominate’ another one if it is at least as good. 

viii. Nash equilibrium 
A ‘Nash equilibrium’, also known as ‘strategic equilibrium’, is a list of strategies, one for each player, 
which has the property that no player can unilaterally change his strategy and obtain a better payoff. 

ix.   -person games 
Games can be classified according to certain significant features. The most straightforward one is the 
number of players (it must be noticed that a player need not be an individual: it might be a nation, or a 
team comprising many people with shared interests). A game can be classified as being a one-person, 

two-person, or  -person (with   greater than two) game.  

x. Constant-sum and variable-sum games 
‘Constant-sum games’ are games of ‘total conflict’ (also known as games of ‘pure competition’), in 
which the sum of all players' payoffs is the same for any outcome. This condition implies that a gain for 
one participant is always at the expense of another. For instance, poker is a constant-sum game for the 
combined wealth of the players remains constant, although its distribution can shift during the game.   
On the other side, in a ‘variable-sum game’, the sum of all players’ payoffs is not constant (and may 
vary depending on the strategies adopted by them). Therefore, players in constant-sum games have 
completely opposed interests, whereas in variable-sum games they may all be winners or losers.  

xi. Zero-sum and non-zero-sum games 
A zero-sum game, which is a particular type of constant-sum games, is a model of a situation in which a 
participant’s gain (or loss) is exactly balanced by the losses (or gains) of the other participant(s): 
therefore, if the total gains of the participants are added up, and the total losses are subtracted, they will 
amount to zero.  
On the other side, non-zero-sum games describe a situation in which the interacting parties’ summed 
gains and losses are either less than or more than zero.  

xii. Cooperative and non-cooperative games 
Variable-sum games can be further categorised as being either ‘cooperative’ or ‘non-cooperative’. In 
cooperative games players can communicate and, more importantly, make binding agreements; in non-
cooperative games players can communicate, but they cannot stipulate such deals.  

xiii. Normal (or strategic) and extensive form 
A game can be described either  in ‘normal’ form or in ‘extensive’ form. The strategic (or normal) form 
is a matrix representation of a simultaneous game. The payoffs are illustrated by a ‘payoff matrix’, 

https://en.wikipedia.org/wiki/Mathematical_model
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wherein each row refers the strategy of one player and each column to the strategy of the other player. 
The matrix entry at the intersection of each row and column gives the outcome of each player choosing 
the corresponding strategy.  
On the other hand, the extensive form (also known as ‘game tree’) is a graphical representation of a 
sequential game. It provides information about the players, payoffs, strategies, and the order of moves. 
The game tree is made up of nodes (or vertices), representing the points at which players can take 
actions, connected by edges, representing the actions that can be taken at that node. The initial node 
represents the first decision to be made, and every set of edges from the first node eventually arrives at 
a terminal node (“an end” of the game). Each terminal node is labelled with the payoffs earned by each 
player (if the game ends there).   

 
Figure 1 

  

III A simple example 
The ‘Prisoner's Dilemma’ — a non-zero-sum game — is a canonical example of a game analysed in 
game theory.  It was originally shaped by Merrill Flood and Melvin Dresher in 1950, but it was Albert 
W. Tucker who formalised it. 

i. The Prisoner’s Dilemma 
The name of the Prisoner's Dilemma game derives from the following hypothetical situation classically 
used to illustrate it. Suppose that the police have arrested two people whom they know have committed 
a robbery together. However, they lack enough admissible evidence for a conviction, but they do have 
enough evidence to send each prisoner away for two years for the theft of the getaway car. Having 
separated both prisoners, the inspector makes the following offer to each of them.: if you testify for the 
prosecution against the other, and he does not also confess, then you will go free and he will be 
condemned to ten years. If you both confess, you will each receive a five-year sentence. If neither of 
you confess, then you will each get two years for the auto theft.  
The two players in the game can choose between two moves, either ‘cooperate’ or ‘defect’, without 
having information about which will be the other's ‘move’. The key idea is that each player gains if both 
cooperate, but if only one of them cooperates, the other one, who defects, will gain more. If both 
defect, they both lose (or at least gain very little) but not as much as the cooperator whose cooperation 
is not returned. 
The situation can be described by a payoff matrix, wherein each cell gives the payoffs to both players 
for each combination of actions. 

 
 

Go free ≫ 4 

2 years ≫ 3 

5 years ≫ 2 

10 years ≫ 0 
 

 
 
 

Table 1 

 

   Prisoner B 
(Player II) 

 

Stay Silent Confess 

 

Prisoner A 
(Player I) 

 

Stay Silent 3,3 0,4 

Confess 4,0 2,2 
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If Player II confesses then Player I obtains a payoff of 2 by confessing and a payoff of 0 by refusing to 
testify. If Player II refuses to defect, then Player I gets a payoff of 4 by confessing and a payoff of 3 by 
staying silent. Consequently, in this game, regardless of the other player’s choice, each player always 
receives a better payoff by defecting: in other words, defecting is the ‘strictly dominant’ strategy. Hence, 
both players will confess, and both will go to prison for five years. 

ii. Solution concepts and equilibria 
In the Prisoner's Dilemma, the outcome represented as mutual defection is said to be the ‘solution’ of 
the game. Borrowing a term form economists and physicists, game theorists refer to the solutions of 
games as ‘equilibria’. Indeed, when a physical system is said to be in equilibrium, it means that it is in an 
endogenously stable state: that is, all the forces internal to the system balance each other out, therefore 
leaving it ‘at rest’ until and unless it is perturbed by some external forces. Likewise, economists read 
economic systems as being networks of mutually constraining (often causal) relations – just like 
physical systems – and the equilibria of such systems are then their endogenously stable states. 
What has been referred to as the ‘solution’ of the Prisoner’s Dilemma is the unique Nash equilibrium of 
the game (where the ‘Nash’ refers to John Nash, the Nobel Laureate mathematician). Nash equilibrium 
applies – or fails to apply, as the case might be – to whole sets of strategies: a set of strategies is a Nash 
equilibrium if no player can improve his payoff, given the strategies of all other players in the game, by 
changing his strategy.  
It is possible to specify one class of games in which Nash equilibrium is always not only necessary but 
sufficient as a solution concept: these are ‘finite’ (i.e. with finitely many players, each of which has a 
finite set of strategies) perfect-information games that are also zero-sum. However, most games do not 
have this property. 

IV Applications of game theory 

i. Description and modelling of population dynamics 
A well-known use of game theory is to describe and model the human populations’ behaviour. In fact, 
some researchers are positive that by finding the equilibria of certain games they can predict the 
behaviour of an actual human population, when confronted with situations analogous to the ones in 
the games studied. However, this particular view of game theory has recently come under criticism, 
mostly because in the real world the assumptions of game theorists are often violated: human 
behaviour often deviates from ‘rationality’ for several reasons (e.g. altruism). 

ii. Economics and business  
Game theory is an effective method used in mathematical economics and business for modelling the 
patterns of behaviour of interacting agents. Its applications comprise a wide range of economic 
phenomena such as auctions, bargaining, fair division, social network formation, voting systems 
(Tesfatsion, 2006), and can be also found in areas such as experimental economics (V. L. Smith, 1992, 
pp. 241-282), behavioural economics (Camerer , 1997), and political economy (Shubik, 1981). In these 
kinds of models, it happens quite often that the payoffs represent money, which most probably 
corresponds to an individual's utility. 

iii. Political science 
The application of game theory in political science is focused on the areas of fair division, political 
economy, war bargaining, and social choice theory. In each of these fields, scholars have developed 
models in which the players are (for example) voters, states, special interest groups, or politicians (see 
Downs, 1957). 

iv. Biology 
John Maynard Smith (a British theoretical evolutionary biologist and geneticist) — in the preface to 
Evolution and the Theory of Games (1982) — writes, “paradoxically, it has turned out that game theory is 
more readily applied to biology than to the field of economic behaviour for which it was originally 
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designed”.  Certainly, in biology, game theory has been used to analyse many seemingly incongruous 
natural phenomena. 
One of the main applications of game theory in biology is the study of the so-called ‘biological 
altruism’, a behaviour that occurs when an individual (‘the donor’) performs an action in order to help 
another organism (‘the recipient’) with no apparent advantage (or even at a cost) to itself. The costs and 
benefits are calculated in terms of ‘reproductive fitness’ (i.e. the expected number of progeny): by 
behaving self-sacrificingly, an individual reduces the number of offspring it is likely to produce itself, 
but increases the number of progeny that other animals are likely to produce.  
From a Darwinian perspective, the existence of altruism in nature seems perplexing and incongruous: 
natural selection should lead individuals to behave in order to increase their own chances of survival 
and reproduction, instead of those of others. Yet instances of altruistic patterns of behaviour can be 
found in various species ranging from vampire bats that regurgitate blood they have gained and donate 
it to group members who have failed to find food, to Vervet monkeys that warn group members of a 
predator's approach,  even if it endangers that individual's chances of survival. Moreover, in social 
insect colonies (e.g. ants, wasps, bees and termites), it happens that sterile workers devote their entire 
lives to other duties, such as protecting the queen, constructing and defending the nest, looking for 
food, and nursing the larvae.  
Arguably, the problem of altruism is closely associated with questions about the level at which natural 
selection acts: if selection acts exclusively at the individual level, favouring some individuals over others, 
then it seems clear that altruism cannot evolve: altruists are at a selective disadvantage compared to the 
egoistic members of their group since behaving altruistically is detrimental for the individual itself, by 
definition. However, the fitness of the group as a whole will be enhanced by the presence of altruists, as 
a group composed of many altruists may have a survival advantage over a group composed 
predominantly or exclusively of selfish organisms. Therefore, it has been hypothesised that the altruistic 
behaviour may evolve by ‘between-group selection’, despite the fact that, within each group, selection 
favours ‘egoistic’ individuals. This idea was first proposed by Darwin himself, and later it was 
appreciated by the founders of modern neodarwinism, although they questioned the importance of this 
evolutionary mechanism.  
Game theory offers another interesting framework for the evolution of ‘reciprocal altruism’, by 
modelling biological interactions by means of so called ‘Iterated Prisoner's Dilemma’. Indeed, for 
biological interactions, it is assumed that the same individuals will interact more than once, and if two 
players play the Prisoner's Dilemma more than once in succession (and they can  remember the 
previous actions of their opponent and change their strategy accordingly) the resulting game is named 
‘Iterated Prisoner's Dilemma’. The concept of cooperation and altruism — as it is analysed by 
evolutionary biology — is  close to the notion of ‘tit for tat’ (an English saying meaning ‘equivalent 
retaliation’), which is an effective strategy first introduced by Anatol Rapoport (in the two tournaments 
held by Robert Axelrod around 1980 in order to find the best strategy for the Prisoner’s Dilemma). An 
agent adopting this strategy will first cooperate, then subsequently replicate the opponent's previous 
action: if the opponent has been cooperative, the agent will be cooperative; otherwise, the agent will 
not be cooperative.  
A noteworthy explanation for the evolution of altruistic behaviour which does not necessarily depend 
on game theory is ‘inclusive fitness theory’, named and developed by British evolutionary biologist 
William Donald Hamilton. It explains how altruistic patterns of behaviour could evolve without the 
need for group-level selection: altruistic genes increase in a population by natural selection only if the 
cost to the altruistic individual is less than the reproductive benefit of the recipient multiplied by the 
likelihood of the recipient passing on the altruistic gene to its progeny (“Hamilton's Rule”). Inclusive 
fitness is often associated with ‘kin selection’, because closely related organisms more likely share the 
same genes (in this case, the altruistic gene). Nevertheless, altruism genes can be found in non-related 
individuals: consequently, ‘relatedness’ is not considered a strict requirement of inclusive fitness. 
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v. Philosophy 
Philosophers have increasingly become interested in game theory since it offers a way of interpreting 
the thoughts of philosophers such as Immanuel Kant, Thomas Hobbes, Jean-Jacques Rousseau, and 
many other social and political theorists. 

a) Kant's categorical imperative 
Immanuel Kant's categorical imperative, which was meant to be the fundamental principle of morality, 
declares: “Act only according to that maxim whereby you can at the same time will that it should 
become a universal law without contradiction” (Immanuel Kant, Grounding for the Metaphysics of Morals). 
In terms of game theory, this statement can be paraphrased as follows: “Choose only a strategy which, 
if you could will it to be chosen by all the players, would yield a better outcome from your point of 
view than any other”. This statement represents a ‘moral solution’ to the Prisoner's Dilemma. Only a 
cooperative choice is acceptable, since the choice of defecting, if “made universal”, is in contradiction 
to one's personal interest. 

b) Hobbes's and Rousseau's social contract 
Through the use of game theory, Thomas Hobbes' argument for absolute monarchy – afterwards made 
popular by Jean-Jacques Rousseau – can be made clearer. Hobbes argued that, without some form of 
external constraint on people's pattern of behaviour, anarchy would ensue and cooperation among 
people would be impossible (as people act only to maximise individual prosperity instead of the welfare 
of their society). Surely, there will exist altruists who limit their self-interests for the good of others. 
Nevertheless, if even one self-interested person exists, he will be able to profit from the altruist’s 
constraints: as a result, if there is just one narrowly self-interested person, no altruist will survive (unless 
he becomes egoistic too). Obviously, in such an environment – known as a ‘State of Nature’ – a person 
has to be always ready to pre-empt attacks in order to maximise his own welfare. Each such conflict 
between people in a State of Nature has been named as ‘Hobbesian Dilemma’, which, in the field of 
game theory, has the same structure as a ‘Prisoner's Dilemma’. Hobbes believed that the ‘Hobbesian 
Dilemma’ results in a State of Nature because morality is an unstable enforcer of social cooperation. 
However, according to Hobbes, as cooperation among people is biologically necessary, a stable 
enforcer must exist, and an all-powerful sovereign represents the best form of social enforcement. 

V Conclusion 
An enormous range of further applications of game theory has been developed, and, regardless of the 
brevity of the introduction, hopefully, it has been provided enough to persuade the reader of the 
remarkable, continuously expanding utility of this tool. 
The readers whose appetite for more has been aroused should find that they now have a sufficient 
grasp of the rudiments to be able to work through a large literature on this topic, of which some 
highlights are listed below. 
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