
Matematicamente.it Magazine
• Numero 23 - Settembre 2014 •

211. Hungarian algorithm:
a Short Presentation using Sage

Sebastiano Ferraris
sebastiano.ferraris@gmail.com

Dedicated to Federica Narciso,
to her courageous sweetness in life

and her tenacious talent in Mathematics.

The following pages are the result of sincere but disconcerted passion, some hours of spare time and
the help of Luca Lussardi, Nicola De Nitti and Giuliano “Nuanda” De Rossi.
This is to be intended as an introduction to the Hungarian Algorithm as well as a set of examples
of recursive algorithm in Python. Any contribution, as suggestion, correction or improvement is
welcome, so please do not hesitate to leave a comment or send me an email!

Introduction

Almost every article about Hungarian starts with the example of worker and tasks. According to the
tradition, imagine to be the manager of a manufacturing company and to have to decide the allocation
of 4 workers in 4 different workstations. Every worker has different experiences and characteristics
and expresses a preference on the station in which he would like to work. The preference is expressed
by giving a score from 1 to 20 (where 1 is the job that they prefer and 20 is the job they would like
to avoid)
Your scope is to assign workers to tasks by making sure that everyone has a job close to its preference.
A way to find a solution to this problem, without comparing manually all the possibilities, is called
Hungarian algorithm. It was published by Harold Kuhn in 1955, grounded on previous works made
by two Hungarian mathematicians, Denes Konig and Jeno Egervary [5]. In a more sophisticated
perspective, not presented here, this problem can be seen as a particular application of the Hitchcock
algorithm [3].

Bipartite Matching

A way to represent input data is using dots and connectors. Dots are used to represent both workers
(Abigail, Baldwin, Cade, Diane) and tasks (t1, t2, t3, t4). Connectors to represent possible decisions
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between workers and tasks. We assign to each connector a value corresponding to the score given
by each worker to the connected task: if Abigail gives a score to the task t1 equals to 15, then the
value of the connector from A to t1 will be 15.
Models made by dots and connectors are in general called graphs, dots are called nodes and connectors
are called edges. Graph used in this situation are called bipartite complete graph. In the first partition
we have workers and in the second partition we have tasks [1]. The number associated to each edge
is called weight of the edge.
In general, given two sets A and B with the same number of elements n = |A| = |B|, for which is
defined a weight function w,

w : A×B −→ R+

(a, b) 7−→ w(a, b)

such that for every couple (a, b) it associates a positive value, it is always possible to draw a cor-
responding bipartite complete graph 1. A subset of edges with no common nodes is called (quite
properly) matching. A matching in a bipartite complete graph with n nodes in each partition is max-
imal if you cannot add an edge to the matching while keeping the condition of not having common
nodes for each edge. To each maximal matching corresponds a possible assignment workers-tasks.
In the figure below the maximal matching is highlighted in blue with the weight of the choose arch.
Abigail is assigned to the job t2 (score 16), Baldwin to the t3 (score 2), Cade to the t1 (score 17) and
Diane to t4 (score 14). The weight of the matching is the sum of the weights of the edges involved
(in this case it is 49). Our aim is to find the maximal matching with minimal weight, i.e. to solve
the so called matching problem.

1You may have to take your time to unpack this sentence. If X is a set, the number of its elements is written as
|X| and it is called cardinality of X. A×B is the cartesian product of the set A times the set B and it is the domain
of the function w. The range of the function is the set of positive real numbers R+, the arrow 7→ means that the
element (a, b) of the domain is mapped into w(a, b).
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Cost Matrix

The representation of data with bipartite graph could be enough to reach the solution with a straight
strategy, involving a device called augmenting path2. In the solution to the matching problem that
is presented here, the bipartite graph is not enough, and a second tool is necessary: the cost matrix.
Consider the set of employees as a vector in alphabetical order e = (A,B,C,D) and the vector of
tasks ordered as t = (t1, t2, t3, t4); the cost matrix is defined as follows

M [i, j] = w(e[i], t[j])

Where w(e[i], t[j]) is the score that the worker e[i] gives to t[j].
In our leading example we will consider:

M =


15 16 19 4
6 1 2 6

17 3 5 12
13 6 16 14

 (1)

At the position [1, 0] of M we find3 the score of Baldwin for the job t1, which is equal to 6. A set of
n of elements of the cost matrix, such that none of them are on the same row or in the same vector
corresponds to a matching. The association presented in the above figure can be represented in the
cost matrix with bold numbers:

M =


15 16 19 4
6 1 2 6

17 3 5 12
13 6 16 14


2This way is well presented in [6].
3According to Python language, indexes start from zero: M [1, 0] is the elment in the second row and in the firs

column of M .
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It is easy to see that the set of the feasible solutions, i.e. the possible associations, has 4! elements (4
possible on the first row, 3 on the second, 2 on the third). Each feasible solution can be represented
in the most economical way with a vector s of dimension 4, such that in the first position we find the
index of the column of the choose element in the first row of M . In the second position, the index
of the column of the element in the second row of M and so on. In the previous case the vector
corresponding to the matching is:

s = (1, 2, 0, 3)

The space of the feasible solution F is the set of the vectors of dimension 4 containing numbers in
the set {0, 1, 2, 3} with no repetitions.
The cost of a vector s in F is defined as

w(s) =
3∑

i=0

M [i, s[i]]

and it corresponds to the weight of the matching.
The solution we are searching for is a vector in the set F with minimal cost (it is called solution
vector and it may be not unique). Since F has n! elements, it is inconvenient to employ a brute
force algorithm to find it.

Figure 1: Hungarian Algorithm Flowchart

Step by Step Algorithm

We propose a version of the algorithm which uses 4 main functions (row reduction, column reduction,
percolation finder, shaker, resolvability test), and 2 auxiliary function (covering segments searcher
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and redundance filter). The input of the algorithm is the cost matrix M (it contains all information
we need to solve the problem) and the output is the solution vector. In the following subsections
each step is presented separately with Sage implementation and examples.

Step 1: Row Reduction

The step 1 consists of the application of a function which finds the minimal element to each row and
subtract it to all the elements of the row.
Input: cost matrix M .
Output: M modified: for each row the minimal element is subtracted to each element of the row.

def row_reduction(M):

’’’

row_reduction(M) \n

step 1: row reduction

’’’

S = copy(M)

for i in range(S.nrows()):

min_row = min([S[i,j] for j in range(S.ncols())])

for j in range(S.ncols()):

S[i,j] = S[i,j] - min_row

return S

The matrix 1 is introduced in Sage as follows:

M = matrix([[15,16,19,4],[6,1,2,6],[17,3,5,12],[13,6,16,14]]); M
15 16 19 4
6 1 2 6

17 3 5 12
13 6 16 14


M1 = row_reduction(M); M1 

11 12 15 0
5 0 1 5

14 0 2 9
7 0 10 8


Step 2: Column Reduction

Step 2 refers to the columns: for each column it finds the minimal element and subtract it to all of
the elements of the column.
Input: cost matrix M .
Output: M modified: for each column the minimal element is subtracted to each element of the
column.
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def col_reduction(M):

’’’

col_reduction(M) \n

step 2: column reduction

’’’

S = copy(M)

for j in range(S.ncols()):

min_col = min([S[i,j] for i in range(S.nrows())])

for i in range(S.nrows()):

S[i,j] = S[i,j] - min_col

return S

Applying this in our leading example we get:

M2 = col_reduction(M1); M2 
6 12 14 0
0 0 0 5
9 0 1 9
2 0 9 8

 (2)

The solution vector does not change if we consider M or M after having applied row or column
reduction:

Lemma 1 Let s1 and s2 two vectors in the space of feasible solutions, w the weight function defining
M and ŵ the weight function defining row reduction(M). If w(s1) ≤ w(s2) then ŵ(s1) ≤ ŵ(s2).

Proof: Let mi the min in the i-th row. Subtract mi to the i-th row is the same as subtract it to
each edge with a common node of the first partition in the related bipartite complete graph. If wi

is the weight function defined by the matrix where we have subtracted the mi only in the i-th row
we have wi(s) = w(s)−mi.
It follows that ŵ(s) = w(s)−

∑n−1
i=0 mi for each s in the feasible space. �

It can be shown that the lemma is still valid if ŵ is the weight function of col reduction(M). It
follows then:

Theorem 1 The solution vector for the matrix M is the same as for the matrix
col reduction(row reduction(M)) as well as for the matrix row reduction(col reduction(M)).

Note that in general col reduction(row reduction(M)) 6= row reduction(col reduction(M)). Which
means that you may not get the same matrix if the order of application of step 1 and step 2 is
inverted.
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Step 3: Percolation Finder

After step 1 and 2 we have got a matrix with some zeros (at least one for each row and one for each
column). If it is possible to “walk” the matrix from the first row to the last just stepping on zeros
and never passing twice on the same column, our walk will be the solution vector we are searching
for. For example in the following matrix

N =


6 11 0 0

12 0 0 4
0 15 5 1
8 14 0 1


we can see such kind of walk and we can notice that the solution is s = (3, 1, 0, 2). In the matrix
(2) a possible the walk through zeros corresponds to the vector (3, 2, 1, 1) which is not a feasible
solution. This rough idea of walk can be formalized under the name of percolation:

Definition 1 Given a costs matrix M , a percolation over M is a subset of n element of the
matrix M , one and only one for each row. If all the elements of a percolation are zeros, it is called
0-percolation.

In general not all the matrices admits 0-percolation, but it easy to prove that every output of step
1 and step 2 admits at least one.
As made in our example we can identify every 0-percolation with a vector v = (j1, j2, . . . , jn) of
dimension n made of integer in the set {0, 1, 2, . . . , n− 1}. With this nomenclature if v[i] = ji then
the element M [i, ji] belongs to the percolation. For example in the matrix N , 4 0-percolations are
possible:

6 11 0 0
12 0 0 4
0 15 5 1
8 14 0 1




6 11 0 0
12 0 0 4
0 15 5 1
8 14 0 1




6 11 0 0
12 0 0 4
0 15 5 1
8 14 0 1




6 11 0 0
12 0 0 4
0 15 5 1
8 14 0 1


We are interested in see how many zeros of the same 0-percolation are in the same column, since
the solution we are searching for will be the 0-percolation having 1 zero in each column. Clearly
the second 0-percolation in four above listed is the the one we are interested in. In consequence of
that we need a mathematical tool that states how far is our percolation from the one that we are
searching:

Definition 2 Given a 0-percolation v over M of length n, the index of redundancy of v is a real
number defined as the maximal number of zeros of the percolation in the same column minus 1, plus
the number of column which not posses any element of the percolation divided by the length of the
percolation.

Sometimes a formula can make a definition easier to be understand. This is one of this cases:

index of redundancy(v) = max− 1 +max/n
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where max is the maximal number of zeros of the percolation in the same column.
In the previous example we have

(2, 1, 0, 2) (3, 1, 0, 2) (2, 2, 0, 2) (3, 2, 0, 2)
1.25 0 2.5 1.25

where each index of redundancy is shown under its percolation. Percolations with redundancy index
equals to 0 are called here solution. Given the percolation V a function to calculate the redundancy
index is

def redundance_index(V):

n = len(V)

occurrence_vector = [V.count(i) for i in range(n)]

return max(occurrence_vector) -1 + occurrence_vector.count(0)*1.0/n

where occurrence vector at the position i gives the number of occurrence of the number i in the
vector V . If M admits at leas one 0-percolation with redundancy index equals to 0, a recursive4

algorithm to find it could be:
Input: cost matrix M
Output: True if the matrix admits a 0-percolation with redundancy index equals to 0, False other-
wise. In the global variable ans is recorded the first 0-percolation found if it exists.

ans = []

def percolation_finder_0(M):

’’’

0-percolation finder

’’’

def find_walk(M, row, sol):

global ans

for i in range(M.nrows()):

if M[row,i] == 0 and i not in sol:

sol = sol + [i]

ans = sol

# print ans

if row >= M.nrows() - 1 or find_walk(M, row+1, sol):

return True

else:

sol = sol[0:-1]

return False

if find_walk(M, 0, []):

return True

else:

return False

4An introduction to recursive algorithm can be found on [2] as well as on wikipedia.
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Uncommenting the line print ans it will be possible to see the recursive algorithm at work. Note
that to use again this algorithm you must initialize the global variable to the empty list. If the
matrix have more than one solution the previous algorithm gives us only the first that he finds. In
general the matrix could admit no solution at all. In this case all the 0-percolation have redundancy
index grater then 0.
This means that we have identified the following two cases:

1. row reduction(col reduction(M)) admits 0-percolation with redundancy index equals to 0.

2. row reduction(col reduction(M)) do not admits 0-percolation with redundancy index equals
to 0.

and since we do not want to rely too much on luck, we need an algorithm that provides all the
0-percolation and tells if some of them has index of redundancy equals to zero or not. We use again
recursion:
Input: cost matrix M .
Output: list of all of the 0-percolation.

walks = []

def percolation_finder_1(M):

’’’

percolation finder vers 1

’’’

def scout(M, breadcrumbs):

global walks

nrows = M.nrows()

ncols = M.ncols()

crumbs_number = len(breadcrumbs)

#print breadcrumbs

if crumbs_number < ncols:

for j in range(ncols):

if M[crumbs_number,j] == 0:

scout(M,breadcrumbs + [j])

elif crumbs_number == ncols:

walks = walks + [breadcrumbs]

for j in range(M.ncols()):

if M[0,j] == 0:

scout(M,[j])

return walks

As before, uncommenting the line print breadcrumbs, we can see recursion at work5. You may have
noticed that a matrix with a lots of zeros makes the walks list too big to be manageable. Since we

5You may be not familiar with global and local variables in Python; if so take a look at [7] pag. 310.
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are not interested in all the percolation but only in those with minimal redundancy, we propose a
way to decide if we may want to stop after having collected “enough” percolations in the vector
walks :
Input: cost matrix M , false if we do not want to find all the percolation, max number of percolation
to be found.
Output: M again, followed by a list build as the list of all percolation followed by the redundace
index.

def percolation_finder(M, find_all = True, max_percolation = 6):

’’’

step 3 - percolation finder

’’’

def redundance_index(V):

n = len(V)

occurrence_vector = [V.count(i) for i in range(n)]

return max(occurrence_vector) -1 + occurrence_vector.count(0)*1.0/n

def scout(M, breadcrumbs):

global walks

nrows = M.nrows()

ncols = M.ncols()

crumbs_number = len(breadcrumbs)

#print breadcrumbs

if crumbs_number < ncols:

col_index_arranged = \\

list(set(range(ncols))-set(breadcrumbs)) + list(set(breadcrumbs))

for j in col_index_arranged:

if M[crumbs_number,j] == 0:

scout(M, breadcrumbs + [j])

elif crumbs_number == ncols:

walks_recorder(breadcrumbs)

def walks_recorder(V,find_all = True):

global walks

ri = redundance_index(V)

if find_all:

walks = walks + [V] + [ri]

elif not find_all:

if 0 not in walks and len(walks) < max_percolation:

walks = walks + [V] + [ri]

for j in range(M.ncols()):

if M[0,j] == 0:

scout(M,[j])
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return [M,walks]

The function walks recorder adds to the global variable walks each new 0-percolation followed by its
redundance index ri. If the variable find all, in the input value, is set to False then the vector walks
will collect only a number of 0-percolation equals to max percolation.6 It does make sense to stop
the recursion before all 0-percolation are collected, just because the indexes of the first cycle-for had
been rearranged:

col_index_arranged = list(set(range(ncols))-set(breadcrumbs)) + list(set(breadcrumbs))

for j in col_index_arranged:

This means that when the algorithm is arrived at the row crumbs number it searches for a new
zero before in columns that are not already been used. For example, if the input matrix is like the
following (the best case to find a solution as well as one of the worst case for a recursive algorithm)

N =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


the first 0-percolation that the algorithm finds is the solution (0, 1, 2, 3). So it makes sense to limit
the solution, even thought if the number max percolation is too little we may lose some multiple
solution.
Applying this to our main example (matrix 2) we get:

walks

[[3, 0, 1, 1], 1.25, [3, 1, 1, 1], 2.5, [3, 2, 1, 1], 1.25]

Step 4: Resolvability Test

At this stage we have got the matrix reduced and the list of 0-percolation (complete or not) with
related redundancy indexes. After the step 4 we will have the list of 0-percolation with minimal
redundancy index, and a flag which states if the 0-percolation (or percolations) founded is already
our solution or not.
Input: cost matrix M , list of 0-percolation, where each 0-percolation is followed by its index of
redundancy.
Output: M again, followed by the list of 0-percolation with minimal index of redundancy, and with
a flag, True if the minimal index is 0 and so we have already our solution, False otherwise.

def resolvability_test(M,walks):

’’’

step 4: Resolvability Test

’’’

6Note that this just stop the recording, and do not stops the recursive steps. It is also possible to stop the recursion
when the max percolation is reached. We did not proposed it here for clarity, but it can be considered as an exercise.
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min_redundance = min(walks)

filtered_walks = \\

[walks[i] for i in range(len(walks))[::2] if walks[i+1] == min_redundance]

if min_redundance == 0:

flag = True

else:

flag = False

return [M, filtered_walks, flag]

The instance range(len(walks))[:: 2] is the list of the redundancy index in the vector walks (all the
odd position in the vector).
Let see how does it work on our main example:

walks = []

A,B = percolation_finder(M2); A,B

resolvability_test(A,B)


6 12 14 0
0 0 0 5
9 0 1 9
2 0 9 8

 , [3, 0, 1, 1] , [3, 2, 1, 1] ,False

 (3)

When the flag is True the job is done, and we can print the solution. If it is False we must do
some manipulation on the matrix in order to add some zeros without change the results. This tricky
passage is here the step number 5, called shaker.

Step 5: Shaker

To perform this passage, first of all we must find the covering segments of the input matrix M . A
covering of M is the minimal set of horizontal or vertical segments that covers all the zeros in the
matrix. In [4], it is suggested to actually draw horizontal or vertical lines over the matrix, covering
all the zeros such that the number of lines is minimal. For reasons related to the implementation
of the algorithm we do not follow that path, even if it is more intuitive (and is therefore strongly
recommended as a starting point of view). Instead of using covering segments, we use a couple of
vectors called covered col and covered row :

Definition 3 Let M be a square matrix with real entries of dimension n×n. We define two vectors
of dimension n called covered col and covered row with elements in the set {0, 1} such that if M [i, j]
is a zero then or covered row[i] = 1 or covered col[j] = 1 and the number of 1 in both vectors is
minimal.
The non-zero elements in the vector covered row are called horizontal covering segments. The non-
zero elements in the vector covered col are called vertical covering segments.

For the matrix 2 those vectors are:

covered row = [0, 1, 0, 0] covered col = [0, 1, 0, 1]
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0 1 0 1

0 6 12 14 0
1 0 0 0 5
0 9 0 1 9
0 2 0 9 8


The algorithm that we use to find covering segments requires the matrix as well as one 0-

percolation with minimal redundancy index. It is called covering segments searcher and will be
used as auxiliary function of the shaker:
Input: cost matrix M , one of the 0-percolation with minimal redundancy index.
Output: position of horizontal and vertical covering segments.

def covering_segments_searcher(M, min_redundance_percolation):

’’’

step 5, auxiliary function

’’’

# (A)

nrows = M.nrows()

ncols = M.ncols()

marked_row = [0]*nrows

marked_col = [0]*ncols

# (B)

occurrence_vector = [min_redundance_percolation.count(i) for i in range(nrows)]

for pos in range(nrows):

if occurrence_vector[pos] > 1:

duplicates_pos = \\

[k for k in range(nrows) if min_redundance_percolation[k] == pos][1:]

for j in duplicates_pos:

marked_row[j] = 1

# (C)

flag_mark = 1

while flag_mark != 0 :

flag_mark = 0

# (C-1)

for i in range(nrows):

if marked_row[i] == 1:

for j in range(ncols):

if M[i,j] == 0 and marked_col[j] != 1:

marked_col[j] = 1

flag_mark = flag_mark + 1

# (C-2)

for j in range(ncols):

if marked_col[j] == 1:

for i in range(nrows):
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if M[i,j] == 0 and marked_row[i] != 1

and min_redundance_percolation[i] == j:

marked_row[i] = 1

flag_mark = flag_mark + 1

# (D)

covered_row = [(i+1)%2 for i in marked_row]

covered_col = marked_col

return (covered_row, covered_col)

It performs the following tasks:

(A) Initialize marked row and marked col as zero vectors. If we want to mark a the row i or a
column j we substitute a 1 at the i position of marked row or at the j position of marked col.

(B) Mark all the row that possess a zero that makes the input 0-percolation redundant (i.e. if (M)h,j
and (M)k,j are zeros in the same column we mark the row k). The vector duplicates pos gives
the position of all the duplicate zeros in the same columns.

(C-1) Mark all the column having a zero in the row marked in the previous step.

(C-2) Mark all the row having zeros in marked cols, only if those zeros are in the 0-percolation with
minimal redundance (so if their cols are in the min redundant percolation vector).

(C) Perform (C-1) and (C-2) in sequence until it is possible to mark new positions.

(D) Vertical covering segments are the segments marked in previous step in the column, whereas
horizontal covering segments are all the unmarked row.

It can be proved that covering segments searcher finds the covering segments for the input matrix.
Moreover the number of covering segments is always equals or less than the dimension of the matrix.
In case of it is equals to its dimension, the vector min redundant percolation has redundancy index
equals to 0. The concept of covering segments leads us to the crucial definition of uncovered, covered
and bi-covered elements in the matrix M .

Definition 4 Let M be a square matrix with real entries of dimension n × n considered with cov-
ered col and covered row vectors.
If at the element M [i, j] corresponds covered row[i] = 0 and covered col[j] = 0 then the element
M [i, j] is called uncovered (and certainly is not a zero).
If only one between covered row[i] and covered col[j] is equals to zero then the element M [i, j] is
called covered.
If both covered row[i] and covered col[j] are equals to 1 then the element M [i, j] is called bi-covered.
The total number of non-zero entries in covered col and covered row is called covering number7.

7It can be defined a discrete monotonous function g, such that (covering number) + g(redundancy index) = n.
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Now we have all that we need to ”shake” our matrix, which means perform what the following
theorem states:

Theorem 2 Let M be a matrix considered with covered col and covered row vectors and with a
solution vector s (element of the space of feasible solution that minimize the cost of the association).
Let m be the minimal element of the set of the uncovered elements. If m is subtracted to all the
uncovered elements and 2m is added to all the bi-covered elements, the new matrix obtained in this
way still admits s as solution vector.

The matrix that results applying the previous theorem is called here shaked matrix. Our shaker
algorithm is as follows:
Input: cost matrix M , set of walks with minimal redundance index.
Output: shaked matrix of M .

(A) Uses auxiliary function to find the covering segments

(B) Finds m the minimal uncovered element value.

(C) m is subtracted to every uncovered element and 2m is added to each bicovered element.

def shaker(M, filtered_walks):

’’’

step 5 - shaker

’’’

nrows = M.nrows()

ncols = M.ncols()

min_redundance_percolation = filtered_walks[0]

# (1)

[cov_row, cov_col] = covering_segments_searcher(M, min_redundance_percolation)

# (2)

zeropos_in_cov_row = [i for i in range(nrows) if cov_row[i] == 0]

zeropos_in_cov_col = [j for j in range(ncols) if cov_col[j] == 0]

m = min([M[i,j] for i in zeropos_in_cov_row for j in zeropos_in_cov_col])

# (3)

for i in range(nrows) :

for j in range(ncols):

if cov_row[i] == 0 == cov_col[j]:

M[i,j] = M[i,j] - m

elif cov_row[i] == 1 == cov_col[j]:

M[i,j] = M[i,j] + 2*m

return M

According to the flow diagram of figure 1, this step is performed after percolation finder and resolv-
ability test until the resolvability test is not passed.
For the main example we have
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walks = []

A,B = percolation_finder(M2); A,B

N = shaker(A,B); N

N =


6 14 14 0
0 2 0 5
8 0 0 8
1 0 8 7

 (4)

Which admits a 0-percolation with redundancy index equals to 0 (it is our solution!). Applying
again percolation finder and resolvability test we get

S = percolation_finder(N);

T = resolvability_test(S[0],S[1]); T


6 14 14 0
0 2 0 5
8 0 0 8
1 0 8 7

 , [[3, 0, 2, 1]] ,True

 (5)

An so the solution to the main problem (that is the association of workers to different tasks that
maximizes satisfaction and productivity) is [3, 0, 2, 1].

Why does it work?

In this section we want to answer the following questions:

1. Why does the solution vector remain unchanged after the shaker is applied to M?

2. Why does the shaker take us away from trouble in a finite number of steps?

The answer to the first question consists is the proof of theorem 2. We approach the proof via some
lemmas:

Lemma 2 Given a cost matrix M of dimension n× n, if p is a percolation with redundancy index
equals to 0, it is uniquely defined by a bijection σ between the set of indexes {0, 1, . . . , n− 1}.

Proof: A percolation p = (j0, j1, . . . , jn−1) with redundancy index equals to 0 is an vector that
associate to each position (row in the corresponding matrix) one and only one integer number
between 0 and n− 1 (column in the corresponding matrix) without repetitions:

(j0, j1, . . . , jn−1) 7−→
(

0 1 2 . . . n− 1
j0 j1 j2 . . . jn−1

)
= σ

Each percolation with redundancy index equals to 0 can be represented by the set of elements of the
matrix {M [i, σ(i)]}n−1i=0 . �
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Lemma 3 Let M be a cost matrix of dimension n × n and covering row and covering col having
n − 1 non-zero elements (covering segments are n-1), and let σ a bijection of n elements. It must
always exists an integer a ∈ {0, 1, . . . , n−1} such that M [a, σ(a)] is uncovered. Moreover if for some
k, M [k, σ(k)] is a bi-covered element then it must exists b and c such that M [b, σ(b)] and M [c, σ(c)]
are uncovered.

Proof: Such k do not always exists: all covering segments can be parallel. In this case either
covering row has only one zero and covering col is all made by zeros or covering col has only one
zero and covering row is all made by zeros. If we consider covering row with only one zero at the
position t then our uncovered element will be M [t, σ(t)] and so we have proved the first part of the
thesis for a = t.

Let M [k, σ(k)] a bi-covered element, then we must have at least one non-zero element in cover-
ing col in the position k and at least two zeros in the vector covering col, in the position a 6= k and
b 6= k (or vice versa one non-zero element in covering col in the position σ−1(k) and at least two
zeros in the vector covering row).

If the percolation defined by σ, passes trough the bi-covered element (and therefore through
M [k, σ(k)]), when it passes through the rows of M , indicated with a and b, it will necessarily
encounter two uncovered elements, since σ(a) 6= σ(k) and σ(b) 6= σ(k). �

As a consequence of the previous lemma we have:

Lemma 4 Let s1 and s2 be two vector in the space of the feasible solution, w the weight function of M
and ŵ the weight function defined by the shaked matrix of M . If w(s1) ≤ w(s2) then ŵ(s1) ≤ ŵ(s2).

And now, considering the fact that The thesis of theorem 2 is equivalent to the lemma 4, theorem
2 has been proved.

The answer to the second questions is a consequence of the following results:

Lemma 5 Let M [i, j] = 0 a bi-covered element in the cost matrix M . It follows that

z cols[j] > 1

z rows[i] > 1

where z cols[j] is the number of zeros in the col j of M and z rows[i] is the number of zeros in the
row i.

Proof: By contradiction, if z rows[i] = 1, there is only one zero on the i-th row. This must be
M [i, j], but it is already covered by the covering segment z cols[j]. According to the minimality
of the covering segments we should have z rows[i] = 0 and M [i, j] = 0 should not be a bi-covered
element. �

Every time step 4 is performed, we add a zero to the set of the uncovered elements, and we remove (in
the worst case) a number of zero equals to the number of bi-covered elements. However according to
the previous lemma this step do not reduces the non-zero element on the vectors z rows and z cols.
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Since after step 1 and step 2 we have at least n + 1 non-zero elements in both z rows and z cols,
after a finite number of application of the steps 4, in the worst case given by∑

i|z rows[i]>1

z rows[i] +
∑

j|z cols[j]>1

z cols[j] + n− 1

all the zeros in vectors z rows and z cols we will be eliminated .
If there is no more zeros means that for each row and col we can always find a percolation with
redundancy index equals to 0 and so we can be sure that step 4 take us away from trouble in a finite
number of steps.

Hungarian Algorithm

Now it is possible to join all the previous steps in one single function, according to the flowchart
presented at the beginning of the section.

def hungarian(M, find_all = True, max_percolation = 6):

’’’

Hungarian Algorithm

’’’

global walks

walks = []

cont = 0

max_loop = max(M.nrows(), M.ncols())

S = row_reduction(col_reduction(M))

[S, walks] = percolation_finder(S, find_all, max_percolation)

[S, filtered_walks, flag] = resolvability_test(S, walks)

while flag == False and cont < max_loop:

S = shaker(S, filtered_walks)

walks = []

[S, walks] = percolation_finder(S, find_all, max_percolation)

[S, filtered_walks, flag] = resolvability_test(S, walks)

cont = cont + 1

walks = []

return filtered_walks

Conclusion

A tool for finding the solution vector of any square matrix has been presented. Saving all functions
here presented in a single one .py file we can load into Sage with command load and reload in the
same session (if some modifications has happened) with the command attach:

load(’/home/paht_to_file/filename.py’)

attach(’/home/paht_to_file/filename.py’)
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We can test it on a random matrix A

A = random_matrix(ZZ, 10, x = 0, y = 30); A

18 3 39 27 2 4 34 8 0 5
11 0 11 17 23 25 32 22 14 0
0 13 0 12 16 12 0 11 14 1
8 28 10 0 24 0 19 3 17 18

16 17 36 0 0 26 32 5 3 20
7 11 11 7 21 4 0 18 8 13

23 14 26 8 2 15 26 0 24 10
11 3 12 0 25 0 24 0 8 1
3 1 0 7 5 12 22 10 13 10
0 0 7 7 0 23 25 17 15 14


s = hungarian(A); s

[[8, 9, 0, 3, 4, 6, 7, 5, 2, 1] , [8, 9, 0, 5, 4, 6, 7, 3, 2, 1]]

If there are more employees than workstations, we can still use the Hungarian algorithm, adding
dummy nodes to the second partition of the biparted complete graph. Each worker will give them a
score from 1 to 20. 1 if they wish to find new job and be moved to another department or workplace;
20 if they prefer not to be moved.
Coming back to our leading example, we suppose that t4 = “be move to another department“and
the workers (A,B,C,D) are very loyal to their place so they give all a score equals to 20 for the
node t4. The cost matrix will be:

M =


15 16 19 20
6 1 2 20

17 3 5 20
13 6 16 20

 (6)

The solution is to move Abigail since

s = hungarian(M); s

[3, 0, 2, 1]
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