PROBLEMA 1

Sia λ la parabola d'equazione $f(x) = 1 + x^2$

- a) Sia F il fuoco di λ e r la sua direttrice, Si determinino le coordinate di F e l'equazione di r
- b) Siano A e B i punti di λ di ordinata S e S il segmento parabolico di base S il determini la retta S che dimezza l'area di S
- c) Si determini il volume del solido generato dalla rotazione di S intorno all'asse x
- d) Si calcoli $\int_{0}^{1} \frac{dx}{f(x)}$ e lo si interpreti geometricamente.

RISOLUZIONE

Punto 1

La parabola di equazione $y = x^2 + 1$ ha l'asse di simmetria coincidente con l'asse delle ordinate, vertice in V(0,1), fuoco di coordinate

$$F\left(0, \frac{1-\Delta}{4a}\right)$$
 cioè $F\left(0, \frac{5}{4}\right)$, direttrice di equazione $y = -\frac{1+\Delta}{4a} = \frac{3}{4}$.

Punto 2

La retta y = 5 interseca l'asse delle ordinate in C(0,5).

Le ascisse dei punti A e B si calcolano risolvendo il seguente sistema

$$\begin{cases} y = x^2 + 1 \\ y = 5 \end{cases} \rightarrow \begin{cases} A \begin{cases} x = -2 \\ y = 5 \end{cases} \\ B \begin{cases} x = 2 \end{cases} \\ y = 5 \end{cases}$$

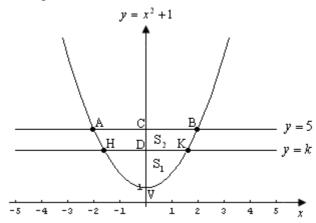
L'area di S è pari a
$$A(S) = \int_{-2}^{2} [5 - (x^2 + 1)] dx$$
.

Integrando si ha

$$A(S) = 2 \cdot \int_{0}^{2} (4 - x^{2}) dx = 2 \cdot \left[4x - \frac{x^{3}}{3} \right]_{0}^{2} = 2 \cdot \left(8 - \frac{8}{3} \right) = \frac{32}{3}.$$

Alternativamente, applicando il teorema di Archimede, l'area del segmento parabolico è pari ai $\frac{2}{3}$ dell'area del rettangolo circoscritto; il rettangolo circoscritto ha area pari a $\overline{AB} \cdot \overline{VC} = 4 \cdot 4 = 16$, per cui il segmento parabolico avrà area $\frac{32}{3}$.

Sia y = k una generica retta parallela all'asse delle ascisse che interseca il segmento parabolico nei punti $H\left(-\sqrt{k-1},k\right),K\left(\sqrt{k-1},k\right)$ con 1 < k < 5 e che suddivide il segmento parabolico in S_1 ed S_2 . Si consideri la figura sottostante.



Sia D(0,k) l'intersezione della retta y=k con l'asse delle ordinate. L'area di S_1 applicando il teorema di Archimede è pari a

$$A(S_1) = \frac{2}{3} \cdot \overline{VD} \cdot \overline{HK} = \frac{2}{3} \cdot (k-1) \cdot 2\sqrt{k-1} = \frac{4}{3} \cdot (k-1)^{\frac{3}{2}}.$$

Allo stesso modo per via integrale si ha $A(S_1) = \int_{-\sqrt{k-1}}^{\sqrt{k-1}} \left[k - (x^2 + 1) \right] dx$

Integrando si ha

$$A(S_1) = 2 \int_0^{\sqrt{k-1}} \left[k - (x^2 + 1) \right] dx = 2 \left[(k-1)x - \frac{x^3}{3} \right]_0^{\sqrt{k-1}} =$$

$$= 2 \left[(k-1)\sqrt{k-1} - \frac{(k-1)\sqrt{k-1}}{3} \right] = \frac{4}{3}(k-1)\sqrt{k-1} = \frac{4}{3}(k-1)^{\frac{3}{2}}$$

Imponendo
$$A(S_1) = \frac{A(S)}{2} = \frac{16}{3}$$
 otteniamo

$$\frac{4}{3} \cdot (k-1)^{\frac{3}{2}} = \frac{16}{3} \to (k-1)^{\frac{3}{2}} = 4 \to (k-1) = 2\sqrt[3]{2} \to k = 1 + 2\sqrt[3]{2}.$$

Punto 3

Il volume richiesto è

$$V = \pi \int_{-2}^{2} \left[5^{2} - (x^{2} + 1)^{2} \right] dx \xrightarrow{\text{Integrando pari}} V = 2\pi \int_{0}^{2} \left(24 - x^{4} - 2x^{2} \right) dx =$$

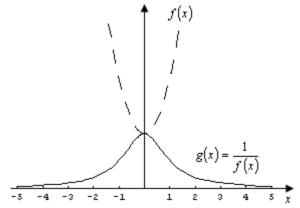
$$= 2\pi \left[24x - \frac{x^{5}}{5} - \frac{2}{3}x^{3} \right]_{0}^{2} = 2\pi \left(48 - \frac{32}{5} - \frac{16}{3} \right) = \frac{1088}{15}\pi$$

Punto 4

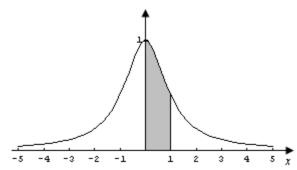
La funzione $g(x) = \frac{1}{f(x)} = \frac{1}{x^2 + 1}$ rappresenta la Versiera di Agnesi e il

suo grafico può essere costruito a partire da quello della parabola, osservando che, essendo f(x) sempre positiva, continua e derivabile su tutto R, lo è anche g(x); inoltre $\lim_{x\to +\infty} g(x) = 0$ e nell'intervallo un cui

f(x) è crescente g(x) è decrescente e viceversa. Di seguito i due grafici in uno stesso riferimento cartesiano:



L'integrale richiesto è pari a $\int_0^1 \frac{1}{x^2 + 1} dx = [\arctan(x)]_0^1 = \frac{\pi}{4}$ che coincide con l'area raffigurata in grigio nella figura di seguito.



PROBLEMA 2

Nel piano Oxy sono dati i punti A(2,0) e B(4,k), con $k \in R$. Sia P il punto ottenuto dalla intersezione della retta x = k con la perpendicolare per B alla retta AB.

a) Si provi che il luogo geometrico γ descritto da P al variare di k ha

equazione:
$$y = \frac{x^2 - 2x + 8}{x}$$

- b) Si disegni γ
- c) Si scriva l'equazione della retta r tangente a γ nel punti di ascissa 1
- d) Si calcoli l'area della parte di piano delimitata da r, da γ e dalla retta x = 2

Punto 1

La retta AB ha coefficiente angolare $m = \frac{k}{2}$ per cui la perpendicolare alla retta AB passante per B(4,k) ha equazione

$$y-k = -\frac{1}{m}(x-4) \rightarrow y = -\frac{2}{k}(x-4) + k$$
. Intersecando la retta di

equazione $y = -\frac{2}{k}(x-4) + k$ con la retta x = k otteniamo il luogo

$$y = -\frac{2}{x}(x-4) + x = \frac{x^2 - 2x + 8}{x}$$
.

Punto 2

Studiamo la funzione $y = \frac{x^2 - 2x + 8}{x}$ Dominio: $x \neq 0 \Leftrightarrow x \in (-\infty,0) \cup (0,+\infty);$

Intersezione asse ascisse: non ve ne sono in quanto

$$x^{2} - 2x + 8 = (x - 1)^{2} + 7 > 0 \ \forall x \in R$$

Intersezione asse ordinate: non ve ne sono perché x = 0 non appartiene al dominio

Positività:

$$N: x^{2} - 2x + 8 > 0 \forall x \in R$$

$$D: x > 0 \Rightarrow x > 0$$

$$y = \frac{x^{2} - 2x + 8}{x} > 0 \Rightarrow x > 0$$

$$0 + x = x$$

Asintoti verticali:

$$\lim_{x \to 0^{-}} \frac{x^{2} - 2x + 8}{x} = -\infty, \lim_{x \to 0^{+}} \frac{x^{2} - 2x + 8}{x} = +\infty \text{ per cui } x = 0 \text{ è asintoto}$$

verticale;

Asintoti orizzontali:
$$\lim_{x \to \pm \infty} \frac{x^2 - 2x + 8}{x} = \pm \infty$$
 per cui non esistono asintoti orizzontali:

Asintoti obliqui: trattandosi di funzione razionale fratta con grado del numeratore pari al grado del denominatore più 1, l'assenza dell'asintoto orizzontale implica la presenza di quello obliquo; esso ha equazione y = mx + q con

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 8}{x^2} = 1,$$

$$q = \lim_{x \to \pm \infty} [f(x) - mx] = \lim_{x \to \pm \infty} \left(\frac{x^2 - 2x + 8}{x} - x\right) = \lim_{x \to \pm \infty} \left(\frac{-2x + 8}{x}\right) = -2$$

quindi l'asintoto obliquo ha equazione y = x - 2;

Crescenza e decrescenza: la derivata prima è

$$y' = \frac{(2x-2)\cdot x - (x^2 - 2x + 8)\cdot 1}{x^2} = \frac{x^2 - 8}{x^2}$$
 il cui quadro dei segni è

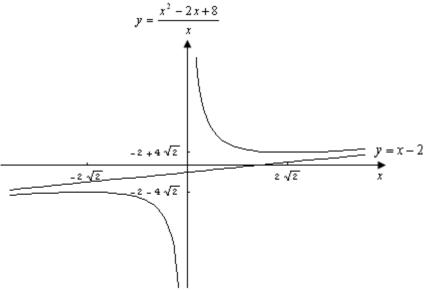
rappresentato a lato;

Quindi la funzione è strettamente crescente in $(-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, +\infty)$ e strettamente decrescente in $(-2\sqrt{2}, 0) \cup (0, 2\sqrt{2})$ e presenta un massimo relativo nel punto $M(-2\sqrt{2}, -2 - 4\sqrt{2})$ ed un minimo relativo in $m(2\sqrt{2}, -2 + 4\sqrt{2})$;

minimo

Concavità e convessità: la derivata seconda è $y'' = \frac{16}{x^3}$ per cui la funzione presenta concavità verso l'alto in $(0,+\infty)$ e verso il basso in $(-\infty,0)$; non esistono flessi.

Il grafico è di seguito presentato:



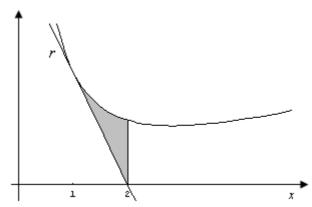
Alternativamente avremmo potuto trovare il grafico a partire dalla seguente considerazione: la funzione $y = \frac{x^2 - 2x + 8}{x}$ può essere scritta come $y = (x - 2) + \frac{8}{x}$ da cui deduciamo che il grafico è una iperbole centro (0,-2), di asintoto verticale x = 0 ed asintoto obliquo y = x - 2.

Punto 3

Il punto ad ascissa unitaria è P(1,7); la derivata prima in x = 1 vale $y'(1) = \left[\frac{x^2 - 8}{x^2}\right]_{x=1} = -7$, per cui la tangente alla funzione nel punto P(1,7) ha equazione y = -7(x-1) + 7 = -7x + 14.

Punto 4

L'area da calcolare è rappresentata in grigio nella figura seguente:



L'area richiesta è pari a

$$A(S) = \int_{1}^{2} \left[\left(\frac{x^{2} - 2x + 8}{x} \right) - \left(-7x + 14 \right) \right] dx = \int_{1}^{2} \left(8x - 16 + \frac{8}{x} \right) dx =$$

$$= \left[4x^{2} - 16x + 8\ln|x| \right]_{1}^{2} = \left(16 - 32 + 8\ln 2 \right) - \left(4 - 16 \right) = 8\ln 2 - 4$$

QUESTIONARIO

Quesito 1

Sia p(x) un polinomio di grado n. Si dimostri che la sua derivata nesima è $p^{(n)}(x) = n! a_n$ dove a_n è il coefficiente di x^n .

Un generico polinomio p(x) di grado n può essere scritto nel seguente modo:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 \text{ con } a_i \in R, i = 0,1,\dots,n$$

Calcoliamo le derivate prima, seconda e così via sino all'n-esima:

$$p'(x) = n \cdot a_n x^{n-1} + (n-1) \cdot a_{n-1} x^{n-2} + \dots + 2 \cdot a_2 x + a_1$$

$$p''(x) = n \cdot (n-1) \cdot a_n x^{n-2} + (n-1) \cdot (n-2) \cdot a_{n-1} x^{n-3} + \dots + 2 \cdot a_2$$

$$p'''(x) = n(n-1)(n-2)a_n x^{n-3} + (n-1)(n-2)(n-3)a_{n-1} x^{n-4} + \dots + 6 \cdot a_3$$

$$\vdots$$

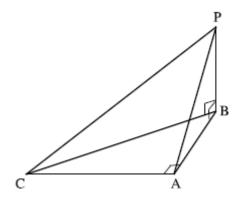
$$p^{(n)}(x) = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot (n-4) \cdot \dots \cdot 2 \cdot 1 \cdot a_n = n! \cdot a_n$$

Quesito 2

Siano ABC un triangolo rettangolo in A, *r* la retta perpendicolare in B al piano del triangolo e *P* un punto di *r* distinto da *B*. Si dimostri che i tre triangoli *PAB*, *PBC*, *PCA* sono triangoli rettangoli.

Consideriamo la figura a lato rappresentante la geometria del problema.

Poiché la retta PB è ortogonale al piano del triangolo, essa è ortogonale a tutte le rette del piano passanti per B, quindi è ortogonale a BA e BC, da cui deduciamo che i triangoli PBC e PBA



sono entrambi rettangoli in B. Ci resta da dimostrare che anche PAC è rettangolo; in particolare vogliamo dimostrare che PAC è rettangolo in A. Ciò è vero se, applicando il teorema di Pitagora, si ha

$$\overline{PC}^2 = \overline{PA}^2 + \overline{AC}^2$$
.

Applicando il teorema di Pitagora ai triangoli PBA, PBC ed ABC otteniamo:

$$\overline{PB}^2 = \overline{PA}^2 - \overline{AB}^2 \quad (1)$$

$$\overline{PC}^2 = \overline{PB}^2 + \overline{BC}^2$$
 (2)

$$\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2 \quad (3)$$

Sostituendo le espressioni (1) e (3) in (2) si ha:

$$\overline{PC}^2 = \overline{PB}^2 + \overline{BC}^2 = (\overline{PA}^2 - \overline{AB}^2) + (\overline{AB}^2 + \overline{AC}^2) = \overline{PA}^2 + \overline{AC}^2$$
 cioè il triangolo PAC è rettangolo in A.

Quesito 3

Sia γ il grafico di $f(x) = e^{3x} + 1$. Per quale valore di x la retta tangente a γ in (x, f(x)) ha pendenza uguale a 2?

La pendenza della retta tangente in x a una funzione f(x) è la derivata prima di f(x). Nel caso in esame la derivata prima di $f(x) = e^{3x} + 1$ è $f'(x) = 3e^{3x}$, per cui imponendo $f'(x) = 3e^{3x} = 2$ si ricava

$$e^{3x} = \frac{2}{3} \rightarrow 3x = \ln\left(\frac{2}{3}\right) \rightarrow x = \frac{1}{3}\ln\left(\frac{2}{3}\right) = \ln\left(\sqrt[3]{\frac{2}{3}}\right).$$

Per
$$x = \ln\left(\sqrt[3]{\frac{2}{3}}\right)$$
 si ha $f\left(\ln\left(\sqrt[3]{\frac{2}{3}}\right)\right) = e^{\ln\left(\frac{2}{3}\right)} + 1 = \frac{2}{3} + 1 = \frac{5}{3}$.

Quindi
$$f(x) = e^{3x} + 1$$
 ha tangente in $\left(\ln \left(\sqrt[3]{\frac{2}{3}} \right), \frac{5}{3} \right)$ con pendenza 2.

Si calcoli: $\lim_{x \to \infty} 4x \sin \frac{1}{x}$

Effettuiamo il cambio di variabile $y = \frac{1}{x}$; se $x \to \infty$ $y \to 0$, per cui

$$\lim_{x \to \infty} 4x \sin \frac{1}{x} = 4 \cdot \lim_{y \to 0} \frac{\sin y}{y} = 4$$

in cui si è sfruttato il limite notevole $\lim_{y\to 0} \frac{\sin y}{y} = 1$.

Quesito 5

Un serbatoio ha la stessa capacità del massimo cono circolare retto di apotema 80 cm. Quale è la capacità in litri del serbatoio?

Consideriamo la figura a lato in cui è rappresentato in sezione un cono di apotema a = 80cm, altezza h e raggio di base r.

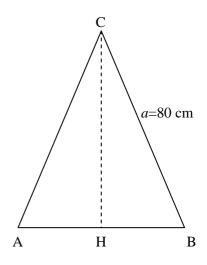
Poniamo $\overline{CH} = x, 0 < x < 80$. Il raggio di base per il teorema di Pitagora misura

$$\overline{\text{HB}} = r = \sqrt{6400 - x^2} \ .$$

Il volume del cono è

$$V(x) = \frac{\pi h r^2}{3} = \frac{\pi}{3} x (6400 - x^2).$$

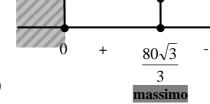
Massimizziamo il volume ricorrendo al calcolo differenziale.



$$V'(x) = \frac{\pi}{3} (6400 - 3x^{2})$$
$$V'(x) > 0 \to 0 < x < \frac{80\sqrt{3}}{3}$$

$$V'(x) > 0 \to 0 < x < \frac{1}{3}$$

$$V'(x) < 0 \rightarrow \frac{80\sqrt{3}}{3} < x < 80$$



quindi il volume è

strettamente crescente in
$$\left(0, \frac{80\sqrt{3}}{3}\right)$$

strettamente decrescente in $\left(\frac{80\sqrt{3}}{3},80\right)$.

Inoltre
$$V''(x) = -2\pi x$$
 e $V''\left(\frac{80\sqrt{3}}{3}\right) = -\frac{160\pi\sqrt{3}}{3} < 0$

per cui il volume è massimo per $x = \frac{80\sqrt{3}}{3}$ e vale

$$V_{MAX} = V\left(\frac{80\sqrt{3}}{3}\right) = \frac{\pi}{3} \frac{80\sqrt{3}}{3} \left(6400 - \frac{6400}{3}\right) = \frac{1024000\sqrt{3}}{27} \pi \text{ cm}^3 =$$
$$= \frac{1024\sqrt{3}}{27} \pi \text{dm}^3$$

Ricordando che 1 litro è uguale a 1 dm³, il volume massimo in litri è $V_{MAX} = \frac{1024\sqrt{3}}{27}\pi$ litri $\cong 206,4$ litri .

1. Si determini il dominio della funzione $f(x) = \sqrt{\cos(x)}$

Il dominio di $f(x) = \sqrt{\cos(x)}$ è l'insieme degli $x \in R$ che soddisfano la disequazione $\cos(x) \ge 0$, cioè $-\frac{\pi}{2} + 2k\pi \le x \le \frac{\pi}{2} + 2k\pi$ con $k \in Z$.

Quesito 7

Per quale o quali valori di k la funzione

$$h(x) = \begin{cases} 3x^2 - 11x - 4, & x \le 4 \\ kx^2 - 2x - 1, & x > 4 \end{cases}$$

è continua in x = 4?

Affinché la funzione h(x) sia continua in x = 4 deve aversi $\lim_{x \to 4^-} h(x) = \lim_{x \to 4^+} h(x)$. Per il caso in esame i limiti sinistro e destro valgono rispettivamente:

$$\lim_{x \to 4^{-}} h(x) = \lim_{x \to 4^{-}} (3x^{2} - 11x - 4) = 0$$

$$\lim_{x \to 4^{+}} h(x) = \lim_{x \to 4^{+}} (kx^{2} - 2x - 1) = 16k - 9$$

Imponendone l'uguaglianza si ha $16k - 9 = 0 \Rightarrow k = \frac{9}{16}$.

In x = 4 la funzione è tuttavia non derivabile e presenta un punto angoloso in quanto

$$\lim_{x \to 4^{-}} h'(x) = \lim_{x \to 4^{-}} (6x - 11) = 13$$

$$\lim_{x \to 4^+} h'(x) = \lim_{x \to 4^+} \left(\frac{9}{8} x - 2 \right) = \frac{5}{2}$$

Se n > 3 e $\binom{n}{n-1}$, $\binom{n}{n-2}$, $\binom{n}{n-3}$ sono in progressione aritmetica, qual è il valore di n?

Una progressione aritmetica è una successione di numeri tali che la differenza tra ciascun termine e il suo precedente sia una costante. Tale costante viene detta *ragione* della progressione.

I tre numeri
$$\binom{n}{n-1}$$
, $\binom{n}{n-2}$, $\binom{n}{n-3}$ sono in progressione aritmetica se $\binom{n}{n-1} - \binom{n}{n-2} = \binom{n}{n-2} - \binom{n}{n-3} \rightarrow \binom{n}{n-3} - 2\binom{n}{n-2} + \binom{n}{n-1} = 0$.

Esplicitiamo i singoli coefficienti binomiali:

$$\binom{n}{n-1} = \frac{n!}{(n-1)! \cdot 1!} = \frac{n!}{(n-1)!} = n$$

$$\binom{n}{n-2} = \frac{n!}{(n-2)! \cdot 2!} = \frac{n!}{(n-2)! \cdot 2} = \frac{n \cdot (n-1)}{2}$$

$$\binom{n}{n-3} = \frac{n!}{(n-3)! \cdot 3!} = \frac{n!}{(n-3)! \cdot 6} = \frac{n \cdot (n-1) \cdot (n-2)}{6}$$

Si ha quindi:

$$\frac{n \cdot (n-1) \cdot (n-2)}{6} - 2 \cdot \frac{n \cdot (n-1)}{2} + n = 0 \rightarrow$$

$$\rightarrow \frac{n \cdot (n-1) \cdot (n-2)}{6} - n \cdot (n-1) + n = 0 \rightarrow$$

$$\rightarrow \frac{n \cdot (n-1) \cdot (n-2)}{6} - n \cdot (n-2) = 0 \rightarrow$$

$$\rightarrow \frac{n \cdot (n-2)}{6} (n-1-6) = \frac{n \cdot (n-2) \cdot (n-7)}{6} = 0 \rightarrow \begin{cases} n = 0 < 3 \text{ non acc.} \\ n = 2 < 3 \text{ non acc.} \\ n = 7 > 3 \text{ acc.} \end{cases}$$

In conclusione il valore accettabile è n = 7 cui corrispondono i tre valori $\binom{7}{6} = 7, \binom{7}{5} = 21, \binom{7}{4} = 35$.

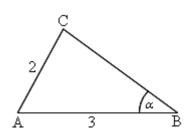
Quesito 9

Si provi che non esiste un triangolo ABC con AB = 3, AC = 2 e $\triangle ABC = 45^{\circ}$. Si provi altresì che se AB = 3, AC = 2 e $\triangle ABC = 30^{\circ}$, allora esistono due triangoli che soddisfano queste condizioni.

Consideriamo la figura a lato, rappresentante il triangolo

ABC con $\overline{AC} = 2$, $\overline{AB} = 3$, $ABC = \alpha$ e consideriamo i casi corrispondenti ad $\alpha = 45^{\circ}$ ed $\alpha = 30^{\circ}$.

•
$$\alpha = 45^{\circ}$$



Applicando il teorema dei seni si ha:

$$\frac{\overline{AB}}{\sin\left(A\hat{C}B\right)} = \frac{\overline{AC}}{\sin\left(\alpha\right)} \rightarrow \sin\left(A\hat{C}B\right) = \frac{\overline{AB}}{\overline{AC}} \cdot \sin\left(\alpha\right) = \frac{3}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{4}$$

Poiché $\frac{3\sqrt{2}}{4} > 1$, un triangolo con $\overline{AC} = 2$, $\overline{AB} = 3$, $\widehat{ABC} = 45^{\circ}$ non esiste.

•
$$\alpha = 30^{\circ}$$

Applicando ancora una volta il teorema dei seni si ricava

$$\frac{\overline{AB}}{\sin(\widehat{ACB})} = \frac{\overline{AC}}{\sin(\alpha)} \rightarrow \sin(\widehat{ACB}) = \frac{\overline{AB}}{\overline{AC}} \cdot \sin(\alpha) = \frac{3}{2} \cdot \frac{1}{2} = \frac{3}{4} \rightarrow$$

$$\rightarrow$$
 AĈB = arcsin $\left(\frac{3}{4}\right)$ \cong 48,6° \vee AĈB = 180° - arcsin $\left(\frac{3}{4}\right)$ \cong 131,4°

In tal caso esistono due triangoli che soddisfano le condizioni $\overline{AC} = 2$, $\overline{AB} = 3$, $\widehat{ABC} = 30^{\circ}$.

Per calcolare la misura del terzo lato si può procedere in due modi distinti:

Teorema dei seni

$$\begin{split} &\frac{\overline{AC}}{\sin\left(\alpha\right)} = \frac{\overline{BC}}{\sin\left(\hat{CAB}\right)} \rightarrow \overline{BC} = \overline{AC} \cdot \frac{\sin\left(\hat{CAB}\right)}{\sin\left(\alpha\right)} = \overline{AC} \cdot \frac{\sin\left(150^{\circ} - \hat{ACB}\right)}{\frac{1}{2}} = \\ &= 2 \cdot \overline{AC} \cdot \sin\left(150^{\circ} - \hat{ACB}\right) = 4 \left[\sin 150^{\circ} \cos\left(\hat{ACB}\right) - \cos\left(150^{\circ}\right) \sin\left(\hat{ACB}\right)\right] = \\ &= 4 \left[\frac{\cos\left(\hat{ACB}\right)}{2} + \frac{\sqrt{3}\sin\left(\hat{ACB}\right)}{2}\right] = 4 \left[\frac{\pm\sqrt{1 - \sin^{2}\left(\hat{ACB}\right)}}{2} + \frac{\sqrt{3} \cdot \sin\left(\hat{ACB}\right)}{2}\right] = \\ &= 4 \cdot \left(\frac{\pm\sqrt{1 - \frac{9}{16}}}{2} + \frac{\sqrt{3} \cdot \frac{3}{4}}{2}\right) = 4 \cdot \left(\pm\frac{\sqrt{7}}{8} + \frac{3\sqrt{3}}{8}\right) = \frac{\left(3\sqrt{3} \pm \sqrt{7}\right)}{2} \end{split}$$

• Teorema di Carnot

Posto
$$\overline{BC} = x \text{ si ha}$$

$$\overline{AC}^2 = \overline{AB}^2 + x^2 - 2 \cdot \overline{AB} \cdot x \cdot \cos(\alpha) \rightarrow$$

$$\rightarrow 4 = 9 + x^2 - 2 \cdot 3 \cdot x \cdot \frac{\sqrt{3}}{2} \rightarrow$$

$$\rightarrow x^2 - 3\sqrt{3} \cdot x + 5 = 0 \rightarrow$$

$$\rightarrow x = \overline{BC} = \frac{3\sqrt{3} \pm \sqrt{7}}{2}$$

Per la ricorrenza della festa della mamma, la sig.ra Luisa organizza una cena a casa sua, con le sue amiche che hanno almeno una figlia femmina. La sig.ra Anna è una delle invitate e perciò ha almeno una figlia femmina. Durante la cena, la sig.ra Anna dichiara di avere esattamente due figli. Si chiede: qual è la probabilità che anche l'altro figlio della sig.ra Anna sia femmina? Si argomenti la risposta.

Anna ha due figli F_1 ed F_2 e sappiamo per certo che almeno uno dei due è femmina. Si possono presentare quindi 3 casi possibili:

- 1. F_1 maschio ed F_2 femmina
- 2. F_1 femmina ed F_2 maschio
- 3. F_1 femmina ed F_2 femmina

Ricordando la definizione frequentista della probabilità come rapporto tra casi favorevoli sui totali, la probabilità di avere due figlie femmine è

pari a
$$p = \frac{1}{3}$$
.

Il quesito può essere risolto alternativamente nel seguente modo. Indichiamo con X la variabile aleatoria indicante il numero di figlie femmine della signora Anna e indichiamo con p la probabilità che un figlio sia di sesso femminile. Il quesito ci chiede di calcolare la probabilità che Anna abbia due figlie femmine sapendo che la prima è femmina, cioè $P(X = 2 \mid X \ge 1)$.

In particolare le probabilità che il numero di figlie femmine sia pari a 0, 1 o 2 sono:

$$P(X = 0) = (1 - p)^{2},$$

 $P(X = 2) = p^{2},$
 $P(X = 1) = 1 - P(X = 0) - P(X = 2) = 1 - (1 - p)^{2} - p^{2} = 2p(1 - p)$

La probabilità richiesta è quindi

$$P(X = 2 \mid X \ge 1) = \frac{P(X = 2 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X = 2)}{P(X \ge 1)} = \frac{P(X = 2)}{P(X = 1) + P(X = 2)} = \frac{P(X = 2)}{P(X = 2)} = \frac{P(X = 2)}{P(X$$

e se assumiamo uguale probabilità per i due sessi si ha

$$P(X = 2 \mid X \ge 1) = \frac{p}{2-p} = \frac{\frac{1}{2}}{2-\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}.$$