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Notation

We adopt the same notation as in [7]. We indicate both a function and its typical

value by the same letter. In addition to the standard notation ∂Ψ
∂zi

, at times we

denote differentiation with respect to a coordinate by a comma followed by

a subscript (usually, the index of the coordinate): for example, for Ψ a scalar,

vector or tensor field, its derivative with respect to coordinate zi will be denoted

by Ψ,i. The derivative of Ψ with respect to time is denoted either by Ψ̇ or by

∂Ψ
∂t ; the variation of Ψ is denoted by δΨ. We denote second-order tensors by

bold-face capitals, vectors by bold-face, low-case letters, and scalars by light-

face letters. We also make use of Einstein’s summation convention, according

to which the summation symbol is suppressed, and summation over all possible

values of an index is signaled implicitly by the fact that it occurs twice in a

monomial term. Greek indexes take the values 1 and 2, Roman indexes range

from 1 to 3.
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Introduction

The goal of this work is to present a study of the natural vibrations of spherical

viral capsids - we think, in particular, of the Satellite Tobacco Mosaic Virus

(STMV) and of the Cowpea Chlorotic Mottle Virus (CCMV) - by employing a

continuum mechanics approach.

We model such capsids as linearly elastic shells, whose response at any

point is transversely isotropic with respect to the radial direction through that

point (the simplest and most important subcase, isotropic response, is almost

invariably considered in literature [9, 28]). Our choice is motivated by the desire

to account for the rotational symmetries with respect to the radial direction of

capsomers, the functional units a capsid consists of. In addition to transverse

isotropy, the shell theory we employ has some other unusual traits. For one, due

to the geometric and material heterogeneity of capsids, we allow both thickness

and constitutive parameters to vary over a shell’s middle surface. Moreover,

while we presume the displacement field to be linear in the thickness coordinate,

as is the case in the classical theories of Kirchhoff-Love and Reissner-Mindlin,

at variance with those theories we allow for thickness distension.

There are two parts. Part I consists of Chapter 1, where we provide an

overview about functions, geometry and mechanical modeling of viral capsids,

and Chapters 2 to 4, where we offer a presentation of the mechanical theory of

linearly elastic spherical shells we employ in this work to model spherical cap-

sids, starting from the indispensable geometric preliminaries to cover kinemat-

ics, balance equations and constitutive issues, so as to arrive at general evolution

v



vi INTRODUCTION

equations in terms of the displacement parameters and their derivatives. Part II

consists of two more chapters. In Chapter 5, the evolution equations needed to

analyze the natural vibrations of capsids are rewritten under the assumptions

of homogeneous and isotropic response, and uniform thickness; moreover, the

capsid is considered empty (that is, with no genome inside). Explicit analyti-

cal solutions are derived for axisymmetric vibrations, in the following special

cases: radial vibrations without thickness changes, uniform radial vibrations

with thickness changes, parallel-wise twist vibrations, and parallel-wise shear

vibrations.

Yang et al. [28] schematized the STMV capsid as a three-dimensional contin-

uous elastic isotropic body; in order to infer the value of the Young’s modulus E

of the capsid, they took for the Poisson’s ratio a value close to that of bulk soft

matter (ν = 0.3), and equated the expression for the longitudinal sound speed

in a three-dimensional isotropic body of generic shape to the numerical value of

this speed measured in STMV crystals by Brillouin scattering experiments [24].

We believe this to be a questionable procedure, because the shell-like geometry

of the capsid is not taken into account. Instead, the explicit formulae we de-

rived for the types of vibrational frequencies listed just above might be used to

obtain a correct estimate of Young’s modulus and Poisson’s ratio of the STMV

capsid, as well as of any spherical capsid susceptible of being modeled as homo-

geneous and isotropic, in case experiments were run, where the corresponding

vibrational modes are induced.

Our last Chapter 6 is devoted to delineate some directions for future re-

search along the lines we have chosen, in particular, to a study of the complex

pressure loading a capsid shell is subject to when genome-filled and immersed

in a hydrostatic environment, a loading that is classified as ‘live’, in that at the

same time it depends on and determines the motion of the shell.



Chapter 1

Viral Capsids

1.1 Functions, Structure, Nomenclature

Viral capsids are self-assembled nanometre-size protein shells whose main func-

tions are to enclose and protect the genetic materials (DNA or RNA) of viruses

in one host cell, to transport and to release those materials inside another host

cell. Being tightly packed into the capsid, the genome exerts a pressure on it,

that the capsid is designed to withstand.

A capsid consists of several structural subunits, the capsomers, made up

by one or more individual proteins and held together by non-covalent forces

so as to form very regular structures that are, in most cases, either helical or

icosahedral1. According to its capsomer structure, the shape of a capsid ap-

proximates, respectively, that of a cylinder and of a sphere. For this reason,

helical and icosahedral capsids are often referred to as, respectively, cylindri-

cal and spherical capsids and, at the macroscopic scale, can be regarded as

cylindrical and spherical shells. Typical examples of viruses with spherical cap-

sids, both largely studied in the literature, are the Satellite Tobacco Mosaic

Virus (STMV, Fig. 1.1) [8, 13, 14, 24] and the Cowpea Chlorotic Mottle Virus

(CCMV, Fig. 1.2) [3, 9, 16, 25, 26]; on the other hand, a classical example of

1The terms “capsid” and “capsomers” were proposed by Lwoff, Anderson and Jacob in
1959 [15].

1



2 CHAPTER 1. VIRAL CAPSIDS

cylindrical viral capsid is the Tobacco Mosaic Virus capsid (TMV, Fig. 1.3). In

the sequel, we shall deal only with spherical (icosahedral) capsids.

Figure 1.1: STMV capsid and arrangement of its subunits.

Figure 1.2: CCMV capsid and arrangement of its subunits.

Figure 1.3: TMV: capsid and genome.

Recall that an icosahedron (Fig. 1.4) – one of the five Platonic solids – is a

regular polyhedron with 20 identical equilateral triangular faces, 30 edges and

12 vertices, showing three-, two- and five-fold symmetry, respectively. A two-

fold symmetry axis passes through the midpoint of each edge, a three-fold axis

through the center of each face, and a five-fold axis through each vertex [2].

The simplest icosahedral capsid is built up by using 3 identical protein



1.1. FUNCTIONS, STRUCTURE, NOMENCLATURE 3

enclosing a large volume with a small protein is to arrange it
in a regular geometric repeat. Corroboration for this hypoth-
esis was provided by D.L.D. Caspar, who noted that the
arrangement of intense reflections in a precession X-ray
photograph of Bushy Stunt Virus corresponded to the
arrangement of icosahedral five-folds (Caspar, 1956), an
interpretation that presaged rotation function searches for
non-crystallographic symmetry (Rossmann and Blow,
1962). Of the Platonic solids, solids composed of identical
subunits, icosahedra have the largest number of subunits. An
icosahedron has 20 facets, where each facet is an equilateral
triangle (Fig. 1). Since the facets each have three-fold
symmetry, the resulting solid has 3� 20¼ 60 identical
asymmetric units. Icosahedra can also be defined in terms
of their 532-point symmetry. Each of the 12 icosahedral
vertexes is coincident with a five-fold symmetry axis
(5� 12¼ 60); of course, symmetry axes run through one
five-fold, through the center of the icosahedron, and out the

other side. Three-fold axes pass through the center of the
facets. There are 30 two-fold axes (2� 30¼ 60) which run
through the edge–edge contacts between facets.

The advantage of icosahedral geometry was that a rela-
tively short RNA/DNA sequence could code for a protein
that would encapsidate the complete genome. The theory of
quasi-equivalence describes how multiples of 60 proteins
can be arranged with icosahedral symmetry to enclose an
even larger volume. It has been one of the great unifying
themes of structural virology since it was introduced by
Caspar and Klug (1962). The underlying postulate of quasi-
equivalence is that the viral coat protein can form pentamers
and hexamers using the same intersubunit contacts. The
only requirement for an icosahedral facet is that it be an
equilateral triangle with three identical asymmetric units
arranged with threefold symmetry. Using a hexagonal grid
(Fig. 2), one can see that there is an infinite series of
equilateral triangles that enclose an integral number of
smaller triangles.

A facet can be divided into three equivalent asymmetric
units (asu). The area of an asu for a triangle with one vertex
on the origin (0, 0) and a second vertex at a point (h, k) is:

T ¼ h2 þ hk þ k2 ð1Þ

In the context of the icosahedron, the corners of the
triangle are the icosahedral five-folds. The hexagonal grid
points in the facet become the quasi-six-fold vertices.
Quasi-symmetry arises because the subunits within an asu
are not equivalent.

Determining the T number from a structure is straightfor-
ward in most cases. One identifies the icosahedral facet by
its five-folds and counts the vertices from one five-fold to the
next. The largest facet in the left of Fig. 2 would generate a
T¼ 16 virus such as Herpes Simplex I (Booy et al., 1988). In
our hexagonal coordinate system the first five-fold is at the

Figure 1. Icosahedra and icosahedral symmetry. Views are
down respective symmetry axes. All symmetry axes cross in
the center of the icosahedron.

Figure 2. Facets for icosahedra with quasi-symmetry. The facets are equilateral triangles with an integral number of subunits.
The geometry of each facet is described by the hexagonal coordinate system (left). On the right are selected facets, drawn with
trapezoidal subunits. The arrows show how to determine the h, k index by counting vertices from five-fold to five-fold.

480 A. ZLOTNICK

Copyright # 2005 John Wiley & Sons, Ltd. J. Mol. Recognit. 2005; 18: 479–490

Figure 1.4: The icosahedron and its symmetries.

subunits to form each triangular face, thereby requiring 60 identical subunits

in total. However, not all capsids contain only 60 subunits. Some form larger

structures, while still keeping the overall icosahedral symmetry. There are many

ways to distribute proteins on a surface in accordance with icosahedral symme-

try and these can be described in terms of tessellations. The first example of

tessellation applied to viral capsids was given by Caspar and Klug [5] in 1962.

Their main idea was that the protein subunits occupy quasi-equivalent positions

on the viral capsid: this means that the individual subunits, in larger capsids,

retain the basic bonding properties, but occupy slightly different environments.

This is realized by the sub-triangulation of each face of the icosahedron into

smaller triangular facets, as we shall point out shortly.

The capsomers in a spherical capsid are classified as pentamers and hexam-

ers, according to whether their rotational symmetries are, respectively, five-fold

or six-fold. Whatever the size of the capsid, since pentamers always occupy the

vertices of the icosahedron, their number is constant and equal to 12; on the

other hand, the number of hexamers, along with the selection rules of their

distribution on a surface lattice, depends on the size of the icosahedron, which

is determined by the so called triangulation number (T -number) [2, 5, 30], a

notion that we now introduce.

Consider a hexagonal plane lattice (Fig. 1.5), and choose the center of a
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hexagon as the origin; with reference to the h and k axes, the centers (lattice

points) of all other hexagons have coordinates (h, k), with both h and k relative

integers. Let L be the distance between the origin and a generic lattice point.

L
(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

h

k

(0,1)

(0,2)

(0,3)

(1,1)

(1,2)

(1,3)

(2,1)

(3,1)

Figure 1.5: Hexagonal plane lattice.

In three dimensions, a lattice point corresponds to a vertex of the icosahedron,

L to the length of its edge, and the equilateral triangle of side L to a single face.

Thus, the size of the icosahedron depends on which lattice point one chooses

to be the vertex closest to the origin. If (h, k) = (1, 0) (shaded triangle), an

icosahedron consisting solely of pentamers is formed; in all other cases, such as

(h, k) = (1, 1), hexamers shall be present as well (figs. 1.6, 1.7). In terms of the

lattice coordinates, it results

L2 = h2 + hk + k2.

The area of the equilateral triangle of side L divided by the area of an equilateral

triangle of unit side (like the shaded triangle in Fig. 1.5) yields the triangulation

number:

T =

√
3

4 L
2

√
3

4

= h2 + hk + k2.

Thus, the T -number is the number of unit-side equilateral triangles (facets)
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each face of the icosahedron can be split into. It can assume only certain integer

values (1, 3, 4, 7, 9, 12, 13, . . . ).

h

k

(1,1)

(0,0)

Figure 1.6: Construction of an icosahedron with T = 3: (h, k) = (1, 1).

Figure 1.7: T = 1 capsid (left) and T = 3 capsid (right) surfaces, viewed from a
three-fold axis: the presence of hexamers, in addition to pentamers, is clearly remarked
in the second case.

Since three proteins can be arranged in each of the 20T facets, the total

number of proteins in an icosahedral capsid is equal to 60T , whereof 60 are

clustered into the 12 pentamers and 60(T − 1) are clustered into hexamers;

hence, the total number of hexamers is equal to 10(T − 1). As to the two

examples mentioned above, the capsid of the STMV, one of the smallest viruses

known, is characterized by a triangulation number T = 1 and thus is made up

of 60 copies of a single protein, clustered into the 12 pentamers, without any

hexamer; the CCMV capsid has, on the other hand, triangulation number T = 3

and is made up of 180 copies of a single protein, clustered into 12 pentamers

and 20 hexamers.
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1.2 Geometry, Material Moduli

The capsomers form protrusions from the capsid surface, making the shell’s

thickness non-uniform [9]. Supposing that an ideal value tI of the thickness

of an icosahedral capsid could be determined (for example, by calculating its

average from the information available in the Protein Data Bank), the thickness

tS of the spherical shell representing the capsid can be calculated by assuming

equality of the volumes of the two shell-like regions. Denote the area of the

capsid surface (icosahedron) by AI , and consider the sphere circumscribed to

the icosahedron as the middle surface of the spherical shell, whose area we

denote by AS ; then,

tS =
AI tI
AS

. (1.1)

Recall that, given the radius ρo of the circumscribed sphere, the length L of the

edge of the icosahedron is

L =
ρo
5

√
10
(

5−
√

5
)

; (1.2)

the area of the icosahedron, on the other hand, is

AI = 5
√

3L2 ; (1.3)

substitution of (1.2) into (1.3) yields

AI = 2
√

3
(

5−
√

5
)
ρ2
o ,

therefore, since AS = 4πρ2
o, (1.1) becomes

tS =

√
3
(
5−
√

5
)

2π
tI ≈ 0.76 tI .

Yang et al. [28] inferred the values of the ideal inner and outer radii of the
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spherical shell representing the STMV capsid – which we will take as a reference

in the sequel – from the graphical representation of the variation of the mass

distribution with respect to the radial coordinate; namely, they considered the

values of the radial coordinate corresponding to the first and last peaks of

that variation, i.e., R1 = 55.4 Å and R2 = 86 Å (Fig. 1.8), whence the values

tS = 30.6 Å for the ideal uniform thickness and ρo = 70.7 Å for the radius of

the middle surface of the spherical shell.

Figure 1.8: Cross-sectional view of the STMV capsid.

The mass density of the shell is obtained by simply dividing the total mass,

calculated from the data available in the Protein Data Bank, by the volume,

and turns out to have the value δo = 823.82 kg/m3. As to the elastic moduli,

Brillouin scattering measurements [24] were performed on hydrated and dehy-

drated crystals of STMV, yielding values of the longitudinal sound speed that

range from 1920 m/s to 3350 m/s, respectively. The longitudinal sound speed

c l in a three-dimensional isotropic elastic continuous body has the following

expression in terms of the Young’s modulus E and the Poisson’s ratio ν:

c l =

√
E(1− ν)

δo(1 + ν)(1− 2ν)
; (1.4)

assuming that the anisotropy of the crystalline structure is weak and that the

Poisson’s ratio of viruses is close to that of soft condensed matter, i.e., ν = 0.3,



8 CHAPTER 1. VIRAL CAPSIDS

then, by (1.4), the values of the Young’s moduli corresponding to the above

sound speeds are, respectively, E1 = 3.7 GPa (for fully hydrated samples) and

E2 = 11.2 GPa (for fully dehydrated samples). However, these values are ob-

tained using the expression of the longitudinal sound speed in a continuous

body of general shape, not of shell-like shape, like the STMV capsid; in fact,

(1.4) involves only the density of the shell, but none of its geometrical features,

such as the thickness and the radius of the middle surface.

As to the CCMV capsid, Speir et al. [23] performed measurements of the

maximum and minimum values of the outer and inner radii, using X-ray crys-

tallography and cryo-electron microscopy techniques; Gibbons and Klug [9]

considered the average values of the results of those measurements, namely,

R1 = 10.4 nm and R2 = 13.2 nm, as the values of the ideal inner and outer radii

of the spherical shell they suppose to represent the capsid, whence the ideal

thickness tS = 2.8 nm and the radius of the middle surface ρo = 11.8 nm. To

infer the mechanical properties of the CCMV capsid, atomic force microscopy

nanoindentation studies were performed [16], yielding values of the Young’s

modulus equal to E1 = 140 MPa for the wild-type capsid and E2 = 190 MPa

for the mutant one; as to the Poisson’s ratio ν, since proteins tend to behave as

if they were almost incompressible [9], it is reasonable to assume a value ν = 0.4.

The value of the Poisson’s ratio was actually shown not to be so influential on

the mechanical response of the capsid.

1.3 Mechanical Modeling

Bottom-up models of viral capsids have been built in the frameworks of both

molecular dynamics (MD) and normal mode analysis (NMA) [1, 6, 25], and

used to study free vibrations [10]. Recently, certain top-down models based on

two- and three-dimensional continuum elasticity have provided a theoretical

complement to single molecule experiments such as atomic force microscopy
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(AFM), and have advanced the fundamental understanding of the mechanics of

these structures when they are subject to external forces.

In particular, Gibbons and Klug [9] have modeled the CCMV capsid as a

three-dimensional homogeneous and isotropic elastic body, and explored what

predictions would follow from adopting one or another of three different non-

linear constitutive laws (namely, St. Venant-Kirchhoff’s, Mooney-Rivlin’s and

Neo-Hookean) when simulating AFM nanoindentation experiments. They found

that the capsid’s force response to indentation is quite insensitive to constitutive

details, and greatly influenced by geometry. To justify their employment of a

three-dimensional elasticity model, they asserted that “the nominal thickness of

CCMV is just over 10% of its outer diameter, likely putting it outside the range

of applicability for thin-shell analysis. Two options remain for analysis of a thick

shell like the CCMV capsid. The first is to resort to shell theories which allow

for shear deformation, and the second is to work within the general framework

of 3D continuum elasticity. In the present work, focus is on the latter, more

general approach”.

In another paper [11], Gibbons and Klug point out the influence of the

capsid’s non-uniform geometry on its mechanical response. They provide a de-

tailed elucidation of the CCMV capsid’s structure and write down explicitly

the expressions of the constructs used in the mechanical modeling, namely, the

non-linear and exact strain measure, the stored elastic energy and the stress

measure, given by the derivative of the elastic energy with respect to the strain

measure; the constitutive law employed is Neo-Hookean (linear in the first in-

variant of the strain measure), extended to the compressible range by addition

to the standard expression for the elastic energy of a term that features the log-

arithm of the determinant of the strain measure. In the same paper, attention

is drawn to the fact that the CCMV’s mechanical response should be modeled

as depending on pH, given that the CCMV can undergo a pH-controlled con-

formational change in the form of a diffused swelling. Models of both native
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and swollen CCMV capsids are generated from X-ray crystal structures, and

used in finite element simulations of AFM indentation along two-, three-, and

five-fold icosahedral symmetry orientations. The force response of the swollen

capsid model is found to be softer by roughly a factor of two, significantly

more non-linear and more orientation-dependent than that of a native capsid

with equivalent elastic moduli. These findings are taken as a demonstration

that a capsid’s geometric heterogeneity can have significant effects on its global

structural response.

Bajaj et al. [3] provided two heterogeneous models of the CCMV capsid,

again in the framework of three-dimensional continuum mechanics. These mod-

els were called the heterogeneous continuous model and the heterogeneous spring

model ; they are refined versions of the homogeneous continuous model set forth

in [9] and [11], and aim to account for the difference in interaction due to

bonded and non-bonded forces (the former acting within the capsomers, the

latter acting between them) and to better capture the non-uniform geometry

and material properties of the capsid. The inter-capsomers region is modeled as

a “pseudo-material”, characterized by a certain Young’s modulus and a certain

Poisson’s ratio, in the heterogeneous continuous model; and as a collection of

elastic springs with a certain overall elastic constant in the spring-based model.

A comparison between the results yielded by these two models and the homo-

geneous continuous model is presented, showing how the two refined models

better reflect the non-linear force-indentation behavior of the capsid observed

experimentally; furthermore, the stiffness of the inter-capsomers region is ob-

served to be much higher than that of the capsomers material itself, and the

Young’s modulus of that region is higher than the overall elastic constant of

the spring model; this is expected since the heterogeneous continuous model

represents a generalization of the spring-based model, and the Young’s modu-

lus of the gap region can be viewed as an infinite sum of infinitesimal elastic

spring constants. Consequently, in the nanoindentation process, the deforma-



1.3. MECHANICAL MODELING 11

tion is mainly undergone by the capsomers, whereas their change in relative

position is not so important: only relative rotations between capsomers con-

tribute to the deformation of the capsid. The stiffness of the pseudo-material

between the capsomers in the heterogeneous continuous model and the overall

elastic constant in the spring-based model are estimated by tuning simulation

parameters, until the output matches the experimental results. The authors’

study also shows that the non-linear force response of the capsids to indenta-

tion is insensitive to the internal molecular dynamics of the proteins, implying

that the continuum approach is valid; however, it is influenced by the capsid’s

geometry.

Ru [22] built a mechanical model of a spherical capsid by using the Reissner-

Mindlin’s shell theory [17] (Section 3.1.1): transverse shear deformations are

allowed because the terms multiplied by the thickness coordinate in the expres-

sions of the in-plane scalar displacements are arbitrary functions of the spherical

coordinates; also, since the radial displacement does not depend on the thick-

ness coordinate, thickness distension is forbidden. A key feature of Ru’s model

is that the transverse shear modulus of capsids is allowed to be much lower than

their in-plane shear modulus, in accordance with the weak resistance of two-

dimensional protein assemblies to transverse shear. The in-plane stress-strain

relations are derived by integration over the thickness of the three-dimensional

isotropic constitutive laws. Another feature of Ru’s model is the employment

of an effective bending thickness h0, in place of the average thickness h, in the

expressions of the bending rigidities. This is because, as Ru states, “[. . . ] further

work needs to be done on calculating and measuring the bending modulus of vi-

ral capsids which plays a central role in viral shell mechanics. For microtubules,

for instance, it has been showed that bending rigidities are determined by an ef-

fective bending thickness h0 = 1.6 nm, which is much smaller than the average

thickness h = 2.7 nm. Therefore, the present model allows the effective bending

thickness h0 to be different from the average thickness h [. . . ]”. The results pro-
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vided in the paper suggest that the classical homogeneous shell model widely

used in the literature would overestimate the strength of viral shells against

buckling under external pressure. Ru’s model could extend the applicability of

homogeneous elastic shell models from large-radius viral shells to small-radius

ones as well, since the effect of transverse shear is more significant for the latter

than for the former.

Analysis of the mechanical properties of viral capsids has also been made

by Tama and Brooks [25] performing normal mode analysis, based on the Elas-

tic Network Model [1]. Application of the standard atomic-level procedure for

NMA entails calculation and diagonalization of the Hessian matrix of the po-

tential energy, whose size is 3N , with N the number of atoms in the system.

Such diagonalizations are impossible for virus particles represented with com-

plete atomic detail, and even with coarse-grained models taking into account

only the Cα atoms, due to their enormous size; thus, methods to reduce the

effective size of the system are needed. For a further reduction of the Hessian

matrix, the authors used the rotation-translation-blocks method, which gives a

good approximation for the low-frequency normal modes. These methods are

successful because the global mechanical properties of the molecule being stud-

ied are sensitive mainly to the mass distribution of the molecule, i.e., the lowest

frequency modes of a molecule can be well represented by analyzing a contin-

uum elastic body with analogous mass distribution. This is exactly what Yang

et al. did [28]. In this paper, the authors “carry coarse-graining to its extreme”

and employ a continuum-mechanical model to perform vibrational analysis of a

variety of systems with spherical symmetry, including the STMV capsid (both

empty and filled with the viral genome), assuming the material to be elastic,

linear, homogeneous and isotropic. Quantization of the vibrational frequencies

follows from the boundary condition that the surface contact forces applied on

the inner and outer surfaces of the capsid be equal to zero.

In the present work, we perform an analysis of natural vibrations of a spher-
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ical capsid, within the framework of linear mechanics of elastic structures. As

in Ru’s model, we schematize a capsid as a linearly elastic spherical shell; but,

unlike for all modeling efforts summarized in the above paragraphs, we allow for

a mechanical response that (i) is inhomogeneous, in that, although fiber-wise

constant, it may vary over middle surface of the shell; and that (ii) is trans-

versely isotropic with respect to the radial direction through each point of that

surface. The motivation of choosing such a response is related, respectively, to

the material and geometric heterogeneity of capsids and to the properties of ro-

tational symmetry of the pentamers and the hexamers with respect to the radial

direction (five-fold and six-fold); in fact, we expect such symmetry properties

to affect the mechanical behavior as well. Two other distinctive elements of our

approach are that (iii) we let the shell thickness vary over the middle surface;

and that (iv) we allow for both transverse shear deformation and thickness dis-

tension. Consequently, our theory is more general than the Reissner-Mindlin’s

shell theory employed by Ru.
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Part I

Linearly Elastic Spherical

Shells

15





Chapter 2

Geometry

We omit details about the general theory regarding the geometry of shell-like

regions; those details are set forth in [7], to which we refer for further deepening.

Here we recollect the main features about the geometry of spherical shells.

2.1 Local Bases

Let E be a three-dimensional Euclidean space, V its associated vector space,

and let x denote the typical point of the middle surface S of a spherical shell.

We choose an origin o ∈ E and denote by x := x−o the position vector of x with

respect to o. Let {o; c1, c2, c3} be a cartesian frame for E and z1 = ϑ, z2 = ψ

be the curvilinear coordinates over S (Fig. 2.1). Defining S := (0, π) × (0, 2π),

the middle surface admits the global one-to-one parametrization given by

S 3 (ϑ, ψ) 7→ x = x(ϑ, ψ) = o+ x(ϑ, ψ) ∈ S,

x(ϑ, ψ) = ρo(sinϑ c(ψ) + cosϑ c3),

c(ψ) = cosψ c1 + sinψ c2.

(2.1)

We write the inverse of mapping (2.1) as

S 3 x 7→ (ϑ, ψ) = (ϑ(x), ψ(x)) ∈ S.

17
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c1

c2

c3

o

S x

ψ

ϑ

e1

e2
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Figure 2.1: Geometrical equipment of the middle surface of a spherical shell.

Given ε > 0, the shell-like region G(S, ε) of thickness 2ε, modeled over S

(Fig. 2.2), admits a global parametrization involving a system of normal coor-

dinates: z1 = ϑ, z2 = ψ, z3 = ζ, the last one being the coordinate along the

direction given by n, the outer unit normal vector field over S:

S× I 3 (ϑ, ψ, ζ) 7→ p = p(ϑ, ψ, ζ) = o+ p(ϑ, ψ, ζ) ∈ G(S, ε),

p(ϑ, ψ, ζ) = x(ϑ, ψ) + ζn(ϑ, ψ).

(2.2)

Setting I := (−ε,+ε), we identify G(S, ε) with the cartesian product S×I, and

thus write p ≡ (x, ζ).

Remark 1. The thickness may vary with point x ∈ S. We will left tacit this

dependence in the following developments, and write ε = ε(x).

We call

Sh := {p ∈ G(S, ε) : p = o+ p(ϑ, ψ, h)} ,
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G(S, ε)

S
2ε

n(x)

x
x + hn(x)

x − hn(x)

Sh

S−h

1

Figure 2.2: Section of a shell-like region with uniform thickness, modeled over the
middle surface S (0 < h < ε).

the surface parallel to S corresponding to ζ = h; also, for fixed x ∈ S, we define

F(x) := {p ∈ G(S, ε) : p = x+ ζn(x), ζ ∈ I} ,

the material fiber passing through x. The tangent plane to S at point x is

defined by

Tx(S) := {q ∈ E : (q − x) · n(x) = 0} ;

the tangent plane to Sh at point ph := x+ hn(x), parallel to Tx(S), is denoted

by Tph(Sh) and defined analogously.

For any point x ∈ S, i.e., for any pair (ϑ, ψ) ∈ S, we can define three different

bases for the vector space V associated with E . The covariant basis is given by

{e1(ϑ, ψ), e2(ϑ, ψ), e3(ϑ, ψ)}, where1

e1(ϑ, ψ) :=
∂x

∂ϑ
(ϑ, ψ) = ρo(cosϑ c(ψ)− sinϑ c3),

e2(ϑ, ψ) :=
∂x

∂ψ
(ϑ, ψ) = ρo sinϑ c′(ψ),

e3(ϑ, ψ) :=
e1(ϑ, ψ)× e2(ϑ, ψ)

|e1(ϑ, ψ)× e2(ϑ, ψ)| = n(ϑ, ψ) = ρ−1
o x(ϑ, ψ) = sinϑ c(ψ) + cosϑ c3;

1Here, a prime denotes differentiation with respect to ψ.
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the contravariant basis is given by {e1(x), e2(x), e3(x)}, where2

e1(x) := s∇ϑ(x) =
1

ρ2
o

e1(ϑ(x), ψ(x)),

e2(x) := s∇ψ(x) =
1

ρ2
o sin2 ϑ(x)

e2(ϑ(x), ψ(x)),

e3(x) := n(x).

A vector field v defined over S can be represented both in the covariant basis

and in the contravariant basis:

v = vie
i = vjej , with vi := v · ei, vj := v · ej (i, j = 1, 2, 3).

Analogously, a second-order tensor field T can be represented as

T = T ijei ⊗ ej = Tije
i ⊗ ej = T ijei ⊗ ej = T ji e

i ⊗ ej ,

in terms of its covariant, contravariant, or mixed components: Tij := T ·ei⊗ej ,

T ij := T · ei ⊗ ej , T ij := T · ei ⊗ ej and T ji := T · ei ⊗ ej .

Since we use an orthogonal coordinate system, i.e., e1 · e2 = 0, we can

define the physical basis {e<1>(ϑ, ψ), e<2>(ϑ, ψ), e<3>(ϑ, ψ)}, a basis made of

mutually orthogonal unit normal vectors, as follows:

e<1>(ϑ, ψ) :=
e1(ϑ, ψ)

|e1(ϑ, ψ)| =
e1(x(ϑ, ψ))

|e1(x(ϑ, ψ))| = cosϑ c(ψ)− sinϑ c3,

e<2>(ϑ, ψ) :=
e2(ϑ, ψ)

|e2(ϑ, ψ)| =
e2(x(ϑ, ψ))

|e2(x(ϑ, ψ))| = c′(ψ),

e<3>(ϑ, ψ) := n(ϑ, ψ) = sinϑ c(ψ) + cosϑ c3.

The advantage of having defined a physical basis is that all of the components

of any tensor or vector field along the elements of such a basis have the same

physical dimensions, unlike the covariant and contravariant components of that

field. Thus, for v and T respectively a vector and tensor field over S, we can

2Here s∇ denotes the surface gradient.
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write

v = v<i> e<i>, T = T<ij> e<i>⊗ e<j> (i, j = 1, 2, 3),

where v<i> := v · e<i> and T<ij> := T · e<i> ⊗ e<j> are, respectively, the

physical components of v and T .

We can also introduce analogous local bases for each point p ∈ G(S, ε). As

to the covariant basis, {g1(ϑ, ψ, ζ), g2(ϑ, ψ, ζ), g3(ϑ, ψ, ζ)}, we have

g1(ϑ, ψ, ζ) :=
∂p

∂ϑ
(ϑ, ψ, ζ) =

(
1 +

ζ

ρo

)
e1(ϑ, ψ),

g2(ϑ, ψ, ζ) :=
∂p

∂ψ
(ϑ, ψ, ζ) =

(
1 +

ζ

ρo

)
e2(ϑ, ψ),

g3(ϑ, ψ, ζ) := n(ϑ, ψ);

the contravariant basis is {g1(x, ζ), g2(x, ζ), g3(x, ζ)}, where

g1(x, ζ) := ∇ϑ(x, ζ) =

(
1 +

ζ

ρo

)−1

e1(x),

g2(x, ζ) := ∇ψ(x, ζ) =

(
1 +

ζ

ρo

)−1

e2(x),

g3(x, ζ) := n(x);

finally, the physical basis is {g<1>(ϑ, ψ, ζ), g<2>(ϑ, ψ, ζ), g<3>(ϑ, ψ, ζ)}, where

g<1>(ϑ, ψ, ζ) :=
g1(ϑ, ψ, ζ)

|g1(ϑ, ψ, ζ)| =
g1(p(ϑ, ψ, ζ))

|g1(p(ϑ, ψ, ζ))| = e<1>(ϑ, ψ) = cosϑ c(ψ)− sinϑ c3,

g<2>(ϑ, ψ, ζ) :=
g2(ϑ, ψ, ζ)

|g2(ϑ, ψ, ζ)| =
g2(p(ϑ, ψ, ζ))

|g2(p(ϑ, ψ, ζ))| = e<2>(ϑ, ψ) = c′(ψ),

g<3>(ϑ, ψ, ζ) := n(ϑ, ψ) = sinϑ c(ψ) + cosϑ c3;

hence, the two physical bases at points x ∈ S and p ∈ G(S, ε) are equal.

2.2 Metric and Shift Tensors. Curvature Tensor

Given the elements of the local bases, we can construct some second-order

tensors involving geometric features of shells. We define the two shift tensors –
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briefly, the shifters –

A(x, ζ) := gi ⊗ ei = sA(x, ζ) + n(x)⊗ n(x), sA(x, ζ) := gβ ⊗ eβ;

B(x, ζ) := gi ⊗ ei = sB(x, ζ) + n(x)⊗ n(x), sB(x, ζ) := gβ ⊗ eβ.

Shifter A(x, ζ) maps the covariant basis at x into the covariant basis at p:

Aek = gk, k = 1, 2, 3;

the role ofB(x, ζ), relating the two contravariant bases at x and p, is completely

analogous. It can be shown [18] that the ratio of the volume measures at p and

x is equal to the determinant of A:

dvol(p) = α(x, ζ) dvol(x), α := detA;

for a spherical shell, we have

A(x, ζ) =

(
1 +

ζ

ρo

)
e<β>⊗ e<β> + n⊗ n, α(x, ζ) =

(
1 +

ζ

ρo

)2

.

On the other hand, the surface shifter sB enters the expression of the gradient

of the fiber-wise constant extension to G(S, ε) of a scalar or vector field defined

over S. For η a scalar field over S, denoting its extension by η̃, we have

∇η̃ = sB s∇η;

whereas, for η a vector field over S, analogously we find

∇η̃ = (s∇η) sBT .

From now on, we will not make any notational distinction between a field defined

over S and its fiber-wise constant extension to G(S, ε), i.e. we shall write the

last two equalities as ∇η = sB s∇η and ∇η = (s∇η) sBT , respectively.
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We also introduce the metric tensors

P := ei ⊗ ei = ei ⊗ ei = sP + n⊗ n, sP := eβ ⊗ eβ = eβ ⊗ eβ = e<β>⊗ e<β>,

G := gi ⊗ gi = gi ⊗ gi = sG+ n⊗ n, sG := gβ ⊗ gβ = gβ ⊗ gβ = g<β>⊗ g<β>.

These symmetric second-order tensors are termed as follows: P (sP ) is the

metric tensor (surface metric tensor) at point x ∈ S; G (sG) is the metric

tensor (surface metric tensor) at point p ∈ G(S, ε), sG being relative to surface

Sh. In the case of a spherical shell, we have G = P (and therefore sG = sP ).

Finally, we define the curvature tensor

W := −s∇n = −n,β ⊗ eβ;

for a spherical shell, we have n = ρ−1
o x, hence the curvature tensor is just a

multiple of the surface metric tensor relative to S:

W = − 1

ρo
eβ ⊗ eβ = − 1

ρo
sP .

Given the previous definitions, the following equalities can be shown to hold:

BTA = P , ABT = G;

sA(x, ζ) = sP (x)− ζW (x).

(2.3)
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Chapter 3

Kinematics

3.1 Displacement Field

In view of the application we have in mind, we choose the following represen-

tation for the displacement field:

u(x, ζ; t) =
(0)
u (x, t) + ζ

(1)
u (x, t),

(0)
u (x, t) = a(x, t) + w(x, t)n(x),

(1)
u (x, t) = ϕ(x, t) + γ(x, t)n(x),

a(x, t) · n(x) = 0, ϕ(x, t) · n(x) = 0, ∀x ∈ S, ∀t ∈ (0,+∞),

(3.1)

where t denotes time. This representation, whose graphic interpretation is pro-

vided in Fig. 3.1, does not forbid transverse shear deformations, nor thickness

distension. It involves six scalar kinematical parameters; in fact, vector fields a

and ϕ are both orthogonal to n.

Given the displacement field u, its gradient has the following expression:

∇u = ρ−1
o

(
1 +

ζ

ρo

)−1 {
a,1⊗ g<1> + (sinϑ)−1a,2⊗ g<2> + ζ (ϕ,1⊗ g<1>+

+ (sinϑ)−1ϕ,2⊗ g<2>
)

+ (w,1 +ζγ,1 )n⊗ g<1> + (sinϑ)−1(w,2 +ζγ,2 )n⊗ g<2>+

+ (w + ζγ)(g<1>⊗ g<1> + g<2>⊗ g<2>)}+ϕ⊗ n+ γ n⊗ n,

25
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and the strain tensor is defined by

E(x, ζ; t) := sym∇u(x, ζ; t).

We record here the physical components of the strain tensor, for later use. They

are given by

2E<ij> = ∇u · (g<i>⊗ g<j> + g<j>⊗ g<i>) (i, j = 1, 2, 3);

this formula yields the following expressions:

E<11> = ρ−1
o

(
1 +

ζ

ρo

)−1

{a<1>,1 +w + ζ(ϕ<1>,1 +γ)} ,

E<22> = ρ−1
o

(
1 +

ζ

ρo

)−1 {
(sinϑ)−1a<2>,2 + cotϑa<1> + w+

+ζ
[
(sinϑ)−1ϕ<2>,2 + cotϑϕ<1> + γ

]}
,

E<33> = γ,

E<12> =
1

2
ρ−1
o

(
1 +

ζ

ρo

)−1{
(sinϑ)−1a<1>,2− cotϑa<2> + a<2>,1 +

+ζ
[
(sinϑ)−1ϕ<1>,2− cotϑϕ<2> + ϕ<2>,1

]}
,

E<13> =
1

2

{
ϕ<1> + ρ−1

o

(
1 +

ζ

ρo

)−1 [
w,1− a<1> + ζ(γ,1−ϕ<1>)

]
}
,

E<23> =
1

2

{
ϕ<2> + ρ−1

o

(
1 +

ζ

ρo

)−1 [
(sinϑ)−1w,2− a<2> + ζ

(
(sinϑ)−1γ,2−ϕ<2>

)]
}
.

(3.2)

Remark 2. The motion of the typical material fiber F(x) can be split into

its rigid part, characterized by a displacement field urig, and its strain part,

characterized by ustr:

u = urig + ustr.

It is immediate to recognize that ustr = ζγn; furthermore, we can write

urig = ut + ur,
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Figure 3.1: Displacement field and its parameters, for a shell-like region modeled over
a general middle surface S.

where ut characterizes translation and ur rotation. Introducing the rotation

vector ω := n×ϕ, we have, respectively,

ut = a+ wn, ur = ζϕ = ω × ζn = ω × (p− x).

In fact, it is straightforward to note that

n× ω = n× (n×ϕ) = −ϕ,

whence ϕ = ω ×n. Therefore, vector ϕ does not represent the rotation vector

of F(x).

There are two known representation formulae for the displacement field of a

shell-like body, Reissner-Mindlin’s and Kirchhoff-Love’s; (3.1) is more general

than both. Further details about the contents of the following subsections can

be found in [17].
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3.1.1 Reissner-Mindlin’s Representation

This representation of the displacement field forbids thickness distension. The

corresponding scalar kinematical constraint is

E · n⊗ n ≡ 0,

which, in terms of the parameters of (3.1), reads

γ ≡ 0.

Thus,
(1)
u = ϕ and we get Reissner-Mindlin’s displacement field

uRM (x, ζ; t) = a(x, t) + w(x, t)n(x) + ζϕ(x, t);

the number of independent scalar parameters is then reduced to five. The motion

undergone by F(x) is completely rigid: it consists of a translation, given by

a+ wn, and a rotation, given by n×ϕ.

3.1.2 Kirchhoff-Love’s Representation

This representation forbids both thickness distension and transverse shear de-

formations. The corresponding scalar kinematical constraints are, respectively,

E · n⊗ n ≡ 0,

E · gβ ⊗ n ≡ 0 (β = 1, 2).

(3.3)

In terms of the parameters of (3.1), again, (3.3)1 reads

γ ≡ 0;
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on the other hand, it can be shown that the two scalar constraints (3.3)2 are

equivalent to the vector constraint

ϕ+Wa+ s∇w ≡ 0.

Again, these constraints modify only the representation of
(1)
u , which becomes

(1)
u = −Wa− s∇w. Moreover, using identity (2.3)3, we can finally get Kirchhoff-

Love’s representation of the displacement field,

uKL(x, ζ; t) = sA(x, ζ)a(x, t) + w(x, t)n(x)− ζ s∇w(x, t),

which involves only three scalar parameters: the two components of a and w.
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Chapter 4

Field Equations

In this chapter, we derive the general balance and evolution equations. We shall

not deal with boundary equations, since for spherical shells ∂S = ∅. All the fields

involved in the following arguments are defined in the referential configuration

of the shell under study.

4.1 Weak Formulation

Let δu be a virtual displacement field of the same form as (3.1), namely,

δu(x, ζ; t) =
(0)

δu(x, t) + ζ
(1)

δu(x, t).

4.1.1 Internal Virtual Work

Let S be the Piola stress tensor [19]. The expenditure of internal virtual work

over the shell-like body G = G(S, ε) is

W int(G) [δu] :=

∫

G
S · ∇δu.

31
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Following the same procedure used in [7] and calculating

s∇
(0)

δu = s∇δa+ n⊗ s∇δw + δw s∇n,

s∇
(1)

δu = s∇δϕ+ n⊗ s∇δγ + δγ s∇n,

the internal virtual work takes the form

W int(G) [δa, δw, δϕ, δγ] =

∫

S

{
sF · s∇δa+ sM · s∇δϕ+ sF Tn · s∇δw+

+ sMTn · s∇δγ + (sF · s∇n) δw+

+
(
f (3) · n+ sM · s∇n

)
δγ + f (3) · δϕ

}
,

(4.1)

where

sF (x, t) :=

∫

I
α(x, ζ)S(x, ζ; t) sB(x, ζ) dζ =

(∫

I
αSgβ dζ

)
⊗ eβ,

sM(x, t) :=

∫

I
α(x, ζ)ζS(x, ζ; t) sB(x, ζ) dζ =

(∫

I
αζSgβ dζ

)
⊗ eβ,

f (3)(x, t) :=

∫

I
α(x, ζ)S(x, ζ; t)n(x) dζ.

(4.2)

We call sF the force tensor, sM the moment tensor and f (3) the shear vector.

4.1.2 External Virtual Work

The system of external loads is made of:

• the distance force per unit volume do = dnio + dino , the former addend

being its non-inertial part, the latter its inertial part. Denoting the mass

density of the shell by δo, we have

dino (x, ζ; t) = −δoü(x, ζ; t);

• the contact force co per unit area, acting on the boundary ∂G of the shell.
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We write ∂G = S−∪S+, where S± := {x± εn(x) : x ∈ S}, and use the notation

Ψ±(x) := Ψ(x,±ε)

for the restriction of a field Ψ to S±.

The expenditure of external virtual work over the shell-like body is

Wext(G) [δu] :=

∫

G
do · δu+

∫

∂G
co · δu.

Again, choosing δu of the same form as (3.1) and following the same procedure

set forth in [7], we get

Wext(G) [δa, δw, δϕ, δγ] =

∫

S
{qo · δa+ (qo · n)δw + ro · δϕ+ (ro · n)δγ} ,

(4.3)

where

qo(x, t) :=

∫

I
α(x, ζ)do(x, ζ; t) dζ + α+(x)c+

o (x) + α−(x)c−o (x),

ro(x, t) :=

∫

I
α(x, ζ)ζdo(x, ζ; t) dζ + ε

(
α+(x)c+

o (x)− α−(x)c−o (x)
) (4.4)

are the distance force and the distance couple per unit area, respectively. The

decomposition do = dino + dnio implies analogous decompositions for qo and ro:

qo = qino + qnio , ro = rino + rnio ; in particular, we find that

qino (x, t) =

∫

I
α(x, ζ)dino (x, ζ; t) dζ = −2εδo





(
1 +

ε2

3ρ2
o

)
∂2

(0)
u

∂t2
(x, t) +

2ε2

3ρo

∂2
(1)
u

∂t2
(x, t)



 ,

rino (x, t) =

∫

I
α(x, ζ)ζdino (x, ζ; t) dζ = −2ε3δo





2

3ρo

∂2
(0)
u

∂t2
(x, t) +

(
1

3
+

ε2

5ρ2
o

)
∂2

(1)
u

∂t2
(x, t)



 .

(4.5)



34 CHAPTER 4. FIELD EQUATIONS

4.1.3 Principle of Virtual Work

All in all, the weak formulation of the equilibrium problem (Principle of Virtual

Work) reads:

∀δa, δw, δϕ, δγ, Wext(G) [δa, δw, δϕ, δγ] =W int(G) [δa, δw, δϕ, δγ] ,

that is to say,

∫

S
{qo · δa+ (qo · n)δw + ro · δϕ+ (ro · n)δγ} =

∫

S

{
sF · s∇δa+ sM · s∇δϕ+ sF Tn · s∇δw+

+ sMTn · s∇δγ + (sF · s∇n) δw+

+
(
f (3) · n+ sM · s∇n

)
δγ + f (3) · δϕ

}
.

(4.6)

4.2 Balance Equations

The weak formulation (4.6) can be rewritten, by integration by parts, as follows:

∫

S

{
(−sDiv sF − qo) · (δa+ δwn) + (−sDiv sM + f (3) − ro) · (δϕ+ δγn)

}
= 0,

(4.7)

whence, by localization, the following point-wise balance equations have to be

satisfied in S:

sDiv sF + qo = 0,

sDiv sM − f (3) + ro = 0.

(4.8)

To provide a component-wise version of these equations, we first define

F := sF + f (3) ⊗ n =

(∫

I
αSgi dζ

)
⊗ ei,

M := sM +m(3) ⊗ n =

(∫

I
αζSgi dζ

)
⊗ ei, m(3) :=

∫

I
αζSn dζ

(4.9)
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We call membrane forces the contravariant components Fαβ := F · eα ⊗ eβ =

sF · eα ⊗ eβ, normal membrane forces for α = β, shear membrane forces for

α 6= β; and we call Mαα := M · eα ⊗ eα = sM · eα ⊗ eα (α = 1, 2) the bending

moments and Mαβ := M · eα ⊗ eβ = sM · eα ⊗ eβ (α, β = 1, 2; α 6= β) the

twisting moments. Finally, we call F 3α := f (3) · eα the transverse shears and

M3α := m(3) · eα the thickness moments.

It can be shown that the following system of six scalar equations, involving

the physical components of the tensor fields defined in (4.9), is equivalent to

the vector equations (4.8):

(sinϑ F<11>) ,1 +F<12>,2− cosϑ F<22> + sinϑ F<31> + ρo sinϑ qo<1> = 0,

(sinϑ F<12>) ,1 +F<22>,2 + cosϑ F<12> + sinϑ F<32> + ρo sinϑ qo<2> = 0,

(sinϑ F<31>) ,1 +F<32>,2− sinϑ (F<11> + F<22>− ρo qo<3>) = 0,

(sinϑ M<11>) ,1 +M<12>,2− cosϑ M<22>− ρo sinϑ F<31> + ρo sinϑ ro<1> = 0,

(sinϑ M<12>) ,1 +M<22>,2 + cosϑ M<12>− ρo sinϑ F<32> + ρo sinϑ ro<2> = 0,

(sinϑ M<31>) ,1 +M<32>,2− sinϑ (M<11> +M<22> + ρo F<33>− ρo ro<3>) = 0.

(4.10)

4.3 Constitutive Assumptions

For the shell under study, we consider a linearly elastic response of the following

kind: transversely isotropic at any point with respect to the direction of n.

Consider the orthonormal basis for the linear space Sym, given by the following

tensors:

Vβ =
1√
2

(g<β>⊗ n+ n⊗ g<β>) (β = 1, 2), V 3 = n⊗ n,

Wβ = g<β>⊗ g<β> (β not summed), W3 =
1√
2

(g<1>⊗ g<2> + g<2>⊗ g<1>) .

(4.11)

Given this basis, a representation formula for the elasticity tensor reflecting our

constitutive assumption can be found in [18]; five independent elastic moduli
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are involved in this representation. However, in technical applications, these

quantities are replaced by six technical moduli – two Young-like, three Poisson-

like and one shear-like – that must satisfy an algebraic condition. The technical

moduli, which we assume to vary with point x ∈ S, enter the representation of

the compliance tensor, i.e., the inverse of the elasticity tensor C, as follows1:

C−1 =
1

Ep
(W1 ⊗W1 +W2 ⊗W2) +

1

En
V 3 ⊗ V 3 +

− νp
Ep

(W1 ⊗W2 +W2 ⊗W1)− νpn
Ep

(V 3 ⊗W1 + V 3 ⊗W2) +

− νnp
En

(W1 ⊗ V 3 +W2 ⊗ V 3) +
1

2G
(V 1 ⊗ V 1 + V 2 ⊗ V 2) +

+
1 + νp
Ep

W3 ⊗W3.

(4.12)

Due to the built-in symmetries of C, it results that

Ep
En

=
νpn
νnp

.

In order to understand the mechanical meaning of the technical moduli, we

preliminarily fix an arbitrary unit vector e such that e ·n = 0, and an arbitrary

unit vector s such that s · n = 0 and s · e = 0.

First, consider an uniaxial stress in the direction e induced in a specimen

made of the material under examination: S = σe⊗ e. Then, the corresponding

strain is E = C−1[S] and we find that the ratio between the axial stress and

the axial strain is the in-plane Young’s modulus

Ep =
S · e⊗ e
E · e⊗ e ;

moreover, we find the in-plane and first transverse Poisson’s moduli, respec-

tively given by

νp = −E · s⊗ s
E · e⊗ e , νpn = −E · n⊗ n

E · e⊗ e .

1Here and in the sequel, we will left tacit the dependence on x of the elasticity and com-
pliance tensors, as well as of the technical moduli.
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Now, consider an uniaxial stress in the direction n, S = σn⊗ n. Analogously,

given the corresponding strain E, we find the transverse Young’s modulus and

the second transverse Poisson’s modulus:

En =
S · n⊗ n
E · n⊗ n , νnp = − E · e⊗ e

E · n⊗ n .

Finally, consider a shear stress of the form S = τ(e ⊗ n + n ⊗ e) and the

corresponding strain E. Then, we find the transverse shear modulus, given by

2G =
S · e⊗ n
E · e⊗ n .

The elasticity tensor can be represented, in terms of the technical moduli, by

inversion of (4.12); it results

C =
Ep
∆

[(1− νpnνnp) (W1 ⊗W1 +W2 ⊗W2) +

+ (νp + νpnνnp) (W1 ⊗W2 +W2 ⊗W1) +

+ (1 + νp)νnpW1 ⊗ V 3 + (1 + νp)νpnW2 ⊗W3] +

+
En
∆

[(1 + νp)νpn (V 3 ⊗W1 + V 3 ⊗W2) +

+ (1− ν2
p)V 3 ⊗ V 3

]
+ 2G (V 1 ⊗ V 1 + V 2 ⊗ V 2) +

+
Ep

1 + νp
W3 ⊗W3,

(4.13)

where

∆ := (1 + νp)(1− νp − 2νpnνnp).
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Component-wise, the constitutive law S = C[E], with C as in (4.13), reads

S<11> =
Ep
∆

[(1− νpnνnp)E<11> + (νp + νpnνnp)E<22> + (1 + νp)νnpE<33>] ,

S<22> =
Ep
∆

[(νp + νpnνnp)E<11> + (1− νpnνnp)E<22> + (1 + νp)νnpE<33>] ,

S<33> =
En
∆

[
(1 + νp)νpn(E<11> + E<22>) + (1− ν2

p)E<33>
]
,

S<12> =
Ep

1 + νp
E<12>,

S<13> = 2GE<13>,

S<23> = 2GE<23>,

(4.14)

where the components E<ij> are expressed as in (3.2). Inserting these relations

into the scalar consequences of definitions (4.9), we find:

F<11> =

∫

I

(
1 +

ζ

ρo

)
S<11> dζ =

2ε

ρo sinϑ

Ep
∆
{(1− νpnνnp) sinϑ(a<1>,1 +w)+

+ (νp + νpnνnp)(sinϑw + a<2>,2 + cosϑa<1>) + (1 + νp)νnpρo sinϑ γ} ,

(4.15)

F<22> =

∫

I

(
1 +

ζ

ρo

)
S<22> dζ =

2ε

ρo sinϑ

Ep
∆
{(νp + νpnνnp) sinϑ(a<1>,1 +w)+

+ (1− νpnνnp)(sinϑw + a<2>,2 + cosϑa<1>) + (1 + νp)νnpρo sinϑ γ} ,

(4.16)

F<33> =

∫

I

(
1 +

ζ

ρo

)2

S<33> dζ =
2ε

ρo sinϑ

En
∆
{(1 + νp)νpn [sinϑ (a<1>,1 +w+

+
ε2

3ρo
(ϕ<1>,1 +γ)) + a<2>,2 + cosϑa<1> + sinϑw+

+
ε2

3ρo
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ)] + (1− ν2

p)

(
1 +

ε2

3ρ2
o

)
ρo sinϑ γ},

(4.17)
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F<12> = F<21> =

∫

I

(
1 +

ζ

ρo

)
S<12> dζ =

=
εEp

ρo sinϑ(1 + νp)
(a<1>,2− cosϑa<2> + sinϑa<2>,1 ) ,

(4.18)

F<31> =

∫

I

(
1 +

ζ

ρo

)
S<31> dζ = 2εG(ϕ<1> + ρ−1

o (w,1− a<1>)), (4.19)

F<32> =

∫

I

(
1 +

ζ

ρo

)
S<32> dζ =

2εG

sinϑ
(sinϑϕ<2> + ρ−1

o (w,2− sinϑa<2>)),

(4.20)

M<11> =

∫

I
ζ

(
1 +

ζ

ρo

)
S<11> dζ =

2ε3

3ρo

Ep
∆

[(1− νpnνnp)(ϕ<1>,1 +γ)+

+
νp + νpnνnp

sinϑ
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + (1 + νp)νnp γ],

(4.21)

M<22> =

∫

I
ζ

(
1 +

ζ

ρo

)
S<22> dζ =

2ε3

3ρo

Ep
∆

[(νp + νpnνnp)(ϕ<1>,1 +γ)+

+
1− νpnνnp

sinϑ
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + (1 + νp)νnp γ],

(4.22)

M<12> = M<21> =

∫

I
ζ

(
1 +

ζ

ρo

)
S<12> dζ =

=
ε3Ep

3ρo sinϑ(1 + νp)
(ϕ<1>,2− cosϑϕ<2> + sinϑϕ<2>,1 ) ,

(4.23)

M<31> =

∫

I
ζ

(
1 +

ζ

ρo

)
S<31> dζ =

2ε3G

3ρo
γ,1 , (4.24)

M<32> =

∫

I
ζ

(
1 +

ζ

ρo

)
S<32> dζ =

2ε3G

3ρo sinϑ
γ,2 . (4.25)

4.4 General Evolution Equations

Inserting the constitutive equations obtained in the previous section and the

scalar consequences of (4.4) and (4.5) into system (4.10), we get the following

six equations in the six unknowns a<1>, a<2>, ϕ<1>, ϕ<2>, w, γ:
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{2ε

ρo

Ep
∆

[(1− νpnνnp)(a<1>,1 +w) sinϑ+ (νp + νpnνnp)(sinϑw + a<2>,2 +

+ cosϑa<1>) + (1 + νp)νnpρo sinϑ γ]},1 + { εEp
ρo sinϑ(1 + νp)

(a<1>,2− cosϑa<2>+

+ sinϑa<2>,1 )},2 −
2ε

ρo
cotϑ

Ep
∆
{(νp + νpnνnp) sinϑ(a<1>,1 +w)+

+ (1− νpnνnp)(sinϑw + a<2>,2 + cosϑa<1>) + (1 + νp)νnpρo sinϑ γ}+

+ 2εG sinϑ(ϕ<1> + ρ−1
o (w,1− a<1>)) + ρo sinϑ qnio <1> =

= 2ερoδo sinϑ

{(
1 +

ε2

3ρ2
o

)
ä<1> +

2ε2

3ρo
ϕ̈<1>

}
,

(4.26)

{
εEp

ρo(1 + νp)
(a<1>,2− cosϑa<2> + sinϑa<2>,1 )

}

,1

+

+ { 2ε

ρo sinϑ

Ep
∆

[(νp + νpnνnp) sinϑ(a<1>,1 +w)+

+ (1− νpnνnp)(sinϑw + a<2>,2 + cosϑa<1>) + (1 + νp)νnpρo sinϑ γ]},2 +

+
εEp cotϑ

ρo(1 + νp)
(a<1>,2− cosϑa<2> + sinϑa<2>,1 ) +

+ 2εG(sinϑϕ<2> + ρ−1
o (w,2− sinϑa<2>)) + ρo sinϑ qnio <2> =

= 2ερoδo sinϑ

{(
1 +

ε2

3ρ2
o

)
ä<2> +

2ε2

3ρo
ϕ̈<2>

}
,

(4.27)

{
2εG sinϑ(ϕ<1> + ρ−1

o (w,1− a<1>))
}
,1

+
{

2εG

sinϑ
(sinϑϕ<2> + ρ−1

o (w,2− sinϑa<2>))

}

,2

+

− 2ε

ρo

Ep
∆
{(1 + νp)(sinϑ(a<1>,1 +w) + sinϑw + a<2>,2 + cosϑa<1>)+

+ 2(1 + νpνnp)ρo sinϑ γ}+ ρo sinϑ qnio <3> = 2ερoδo sinϑ

{(
1 +

ε2

3ρ2
o

)
ẅ +

2ε2

3ρo
γ̈

}
,

(4.28)
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{2ε3

3ρo

Ep
∆

sinϑ[(1− νpnνnp)(ϕ<1>,1 +γ) +
νp + νpnνnp

sinϑ
(ϕ<2>,2 + cosϑϕ<1>+

+ sinϑ γ) + (1 + νp)νnpγ]},1 + { ε3Ep
3ρo sinϑ(1 + νp)

(ϕ<1>,2− cosϑϕ<2>+

+ sinϑϕ<2>,1 )},2 −
2ε3 cosϑ

3ρo

Ep
∆
{(νp + νpnνnp)(ϕ<1>,1 +γ)+

+
1− νpnνnp

sinϑ
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + (1 + νp)νnp γ}+

− 2ερo sinϑG(ϕ<1> + ρ−1
o (w,1− a<1>)) + ρo sinϑ rnio <1> =

= 2ε3δo sinϑ

{
2

3
ä<1> + ρo

(
1

3
+

ε2

5ρ2
o

)
ϕ̈<1>

}
,

(4.29)

{
ε3Ep

3ρo(1 + νp)
(ϕ<1>,2− cosϑϕ<2> + sinϑϕ<2>,1 )

}

,1

+

{2ε3

3ρo

Ep
∆

[(νp + νpnνnp)(ϕ<1>,1 +γ) +
1− νpnνnp

sinϑ
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ)+

+ (1 + νp)νnp γ]},2 +
ε3Ep cotϑ

3ρo(1 + νp)
(ϕ<1>,2− cosϑϕ<2> + sinϑϕ<2>,1 )+

− 2ερoG(sinϑϕ<2> + ρ−1
o (w,2− sinϑa<2>)) + ρo sinϑ rnio <2> =

= 2ε3δo sinϑ

{
2

3
ä<2> + ρo

(
1

3
+

ε2

5ρ2
o

)
ϕ̈<2>

}
,

(4.30)

(
2ε3G sinϑ

3ρo
γ,1

)

,1

+

(
2ε3G

3ρo sinϑ
γ,2

)

,2

− 2ε3 sinϑ

3ρo

Ep
∆
{(1 + νp)(ϕ<1>,1 +γ)+

+
1 + νp
sinϑ

(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + 2(1 + νp)νnp γ}

− 2ε
En
∆
{(1 + νp)νpn[(a<1>,1 +w +

ε2

3ρo
(ϕ<1>,1 +γ)) sinϑ+

+ a<2>,2 + cosϑa<1> + sinϑw +
ε2

3ρo
(ϕ<2>,2 + cosϑϕ<1>+

+ sinϑ γ)] + (1− ν2
p)

(
1 +

ε2

3ρ2
o

)
ρo sinϑ γ}+ ρo sinϑ rnio <3> =

= 2ε3δo sinϑ

{
2

3
ẅ + ρo

(
1

3
+

ε2

5ρ2
o

)
γ̈

}
.

(4.31)

This system of equations is to be equipped with a set of initial conditions for

the unknown fields and for their time rates.
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Part II

Analysis of Natural Vibrations
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Chapter 5

Evolution Equations

In this chapter, we write down the evolution equations necessary to perform

analysis of vibrational modes of a spherical shell, like the STMV capsid. To

this aim, no external loads have to be taken into account, except the inertial

distance force dino ; therefore, the only distance actions per unit area involved

are qo = qino and ro = rino . Furthermore, as is the case in the majority of the

literature about spherical capsids, we will restrict our attention to the subcase

of homogeneous and isotropic response, as well as uniform thickness. Thus,

equations (4.26) to (4.31) have to be specialized by neglecting the terms qnio <i>

and rnio <i> (i = 1, 2, 3) and assuming the elastic moduli to be independent of

x, with Ep = En = E, νp = νpn = νnp = ν, E = 2G(1 + ν). Provided the above

hypotheses, the general equations of Section 4.4 become:

2E

ρo(1 + ν)(1− 2ν)
[(1− ν)(a<1>,1 +w) sinϑ+ ν(sinϑw + a<2>,2 + cosϑa<1>)+

νρo sinϑ γ] ,1 +
E

ρo sinϑ(1 + ν)
(a<1>,2− cosϑa<2> + sinϑa<2>,1 ),2 +

− 2 cotϑ

ρo

E

(1 + ν)(1− 2ν)
[ν sinϑ(a<1>,1 +w) + (1− ν)(sinϑw + a<2>,2 +

cosϑa<1>) + νρo sinϑ γ] + 2G sinϑ(ϕ<1> + ρ−1
o (w,1−a<1>)) =

= 2ρoδo sinϑ

[(
1 +

ε2

3ρ2
o

)
ä<1> +

2ε2

3ρo
ϕ̈<1>

]
,

(5.1)

45
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E

ρo(1 + ν)
(a<1>,2− cosϑa<2> + sinϑa<2>,1 ),1 +

2E

ρo sinϑ(1 + ν)(1− 2ν)
[ν sinϑ(a<1>,1 +w) + (1− ν)(sinϑw + a<2>,2 + cosϑa<1>)+

+ νρo sinϑ γ],2 +
E cotϑ

ρo(1 + ν)
(a<1>,2− cosϑa<2> + sinϑa<2>,1 )+

+ 2G(sinϑϕ<2> + ρ−1
o (w,2− sinϑa<2>)) = 2ρoδo sinϑ

[(
1 +

ε2

3ρ2
o

)
ä<2> +

2ε2

3ρo
ϕ̈<2>

]
,

(5.2)

G [sinϑ(ϕ<1> + ρ−1
o (w,1−a<1>))],1 +

G

sinϑ

[
sinϑϕ<2> + ρ−1

o (w,2− sinϑa<2>)
]
,2

+

− E

ρo(1 + ν)2(1− 2ν)
[(1 + ν)(sinϑ(a<1>,1 +w) + sinϑw + a<2>,2 + cosϑa<1>)+

2(1 + ν2)ρo sinϑ γ
]

= ρoδo sinϑ

[(
1 +

ε2

3ρ2
o

)
ẅ +

2ε2

3ρo
γ̈

]
,

(5.3)

2ε2E sinϑ

3ρo(1 + ν)(1− 2ν)

[
(1− ν)(ϕ<1>,1 +γ) +

ν

sinϑ
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + νγ

]
,1

+

ε2E

3ρo sinϑ(1 + ν)
(ϕ<1>,2− cosϑϕ<2> + sinϑϕ<2>,1 ),2 +

− 2ε2E cosϑ

3ρo(1 + ν)(1− 2ν)

[
ν(ϕ<1>,1 +γ) +

1− ν
sinϑ

(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + νγ

]
+

− 2ρoG sinϑ(ϕ<1> + ρ−1
o (w,1− a<1>)) = 2ε2δo sinϑ

[
2

3
ä<1> + ρo

(
1

3
+

ε2

5ρ2
o

)
ϕ̈<1>

]
,

(5.4)

ε2E

3ρo(1 + ν)
(ϕ<1>,2− cosϑϕ<2> + sinϑϕ<2>,1 ),1 +

+
2ε2E

3ρo(1 + ν)(1− 2ν)

[
ν(ϕ<1>,1 +γ) +

1− ν
sinϑ

(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ) + νγ

]

,2

+

ε2E cotϑ

3ρo(1 + ν)
(ϕ<1>,2− cosϑϕ<2> + sinϑϕ<2>,1 )+

− 2G(ρo sinϑϕ<2> + w,2− sinϑa<2>) = 2ε2δo sinϑ

[
2

3
ä<2> + ρo

(
1

3
+

ε2

5ρ2
o

)
ϕ̈<2>

]
,

(5.5)
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ε2G

3ρo
(sinϑ γ,1 ),1 +

ε3G

3ρo sinϑ
γ,22−

ε2E sinϑ

3ρo(1 + ν)(1− 2ν)
[ϕ<1> + γ +

1

sinϑ
(ϕ<2>,2 +

cosϑϕ<1> + sinϑ γ) + 2νγ]− E

(1 + ν)(1− 2ν)
{ν[(a<1>,1 +w +

ε2

3ρo
(ϕ<1>,1 +γ)) sinϑ+

+ a<2>,2 + cosϑa<1> + sinϑw +
ε2

3ρo
(ϕ<2>,2 + cosϑϕ<1> + sinϑ γ)]+

(1− ν)

(
1 +

ε2

3ρ2
o

)
ρo sinϑ γ} = ε2δo sinϑ

[
2

3
ẅ + ρo

(
1

3
+

ε2

5ρ2
o

)
γ̈

]
.

(5.6)

5.1 Analytical Solutions

In this section, we examine some special cases in which it is possible to write

down closed-form solutions of equations (5.1) to (5.6) that represent vibrational

modes of a spherical shell. We restrict our attention to axisymmetric vibrations,

so that all derivatives of the scalar kinematical parameters with respect to ψ

vanish; we also denote differentiation with respect to ϑ (the only spatial variable

involved) by a prime. We can represent the general axisymmetric displacement

field in terms of the elements of the physical basis as follows:

ua(ϑ, ψ, ζ, t) = (a<1>(ϑ, t) + ζϕ<1>(ϑ, t)) e<1>(ϑ, ψ)+

+ (a<2>(ϑ, t) + ζϕ<2>(ϑ, t)) e<2>(ψ) + (w(ϑ, t) + ζγ(ϑ, t))n(ϑ, ψ).

(5.7)

5.1.1 Radial Vibrations without Thickness Changes

The scalar parameter which describes radial displacements is w. Since we only

have this unknown (all other parameter fields in (5.7) being taken identically

null), all variations of the kinematical parameters appearing in the weak for-

mulation (4.7) vanish, except δw. Therefore, the equation that governs the

evolution of w is (5.3), which takes the following form:

G(w′′ + cotϑ w′)− 2E

(1 + ν)(1− 2ν)
w = ρ2

oδo

(
1 +

ε2

3ρ2
o

)
ẅ. (5.8)
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It is immediate to check that, if w is independent of ϑ, then (5.8) reads

ẅ + ω2
0w = 0, with ω2

0 =
2E

ρ2
oδo

(
1 + ε2

3ρ2o

)
(1 + ν)(1− 2ν)

;

this special case corresponds to uniform radial vibrations (shrinking or swelling

of the shell). More generally, if we look for solutions of the form

w(ϑ, t) = ŵ(ϑ) cosωt, (5.9)

we see that the same vibrational frequency ω0 is associated with radial displace-

ments whose spatial dependence is such that the first addend on the left-hand

side of (5.8) vanishes, i.e.,

ŵ′′ + cotϑ ŵ′ = 0.

The general solution of this equation can be readily found by separation of

variables, and turns out to be

ŵ(ϑ) = c1 log

(
tan

ϑ

2

)
+ c2, (5.10)

with c1 and c2 two integration constants. This solution diverges as ϑ→ 0+ and

ϑ→ π−, and is null at ϑ = π
2 .

Another solution of (5.8), obtained by using factorization (5.9), is given by

ŵ(ϑ) = a cosϑ, a = a constant. (5.11)

In this case, the vibrational frequency turns out to be

ω2
1 =

2G(3− 2ν)

ρ2
oδo

(
1 + ε2

3ρ2o

)
(1− 2ν)

=
E(3− 2ν)

ρ2
oδo

(
1 + ε2

3ρ2o

)
(1 + ν)(1− 2ν)

.

Since −1 < ν < 1
2 , it results that ω2

1 > ω2
0. For any fixed time t, the radial
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displacement is maximum in magnitude at the two poles (ϑ = 0 and ϑ = π)

and null at ϑ = π
2 (Fig. 5.1).

S

ϑ

1

Figure 5.1: Radial displacements given by (5.11), with a > 0.

5.1.2 Uniform Radial Vibrations with Thickness Changes

In this case, we have two unknown fields: w and γ. Applying the same argument

as in the previous case, we have to consider equations (5.3) and (5.6). As we

are interested in uniform radial and thickness vibrations, we look for solutions

of the form

w = ŵ cos(ωt), γ = γ̂ cos(ωt),

with ŵ and γ̂ constants. With these hypotheses, equation (5.3) reads

−ω2ρ2
oδo

((
1 +

ε2

3ρ2
o

)
ŵ +

2ε2

3ρo
γ̂

)
+

2E

(1 + ν)2(1− 2ν)

(
(1 + ν)ŵ + (1 + ν2)ρoγ̂

)
= 0,

(5.12)
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whereas (5.6) takes the form

− ω2ε2δo

(
2

3
ŵ + ρo

(
1

3
+

ε2

5ρ2
o

)
γ̂

)
+

+
E

1− 2ν

{
2ε2

3ρo
γ̂ +

1

1 + ν

[
2νŵ +

(
(1− ν)ρo + (1 + ν)

ε2

3ρo

)
γ̂

]}
= 0.

(5.13)

Thus, we find two expressions of ω2 in terms of ŵ and γ̂; we then need to solve

the following algebraic equation:

2E
(
(1 + ν)ŵ + (1 + ν2)ρoγ̂

)

ρ2
oδo(1 + ν)2(1− 2ν)

((
1 + ε2

3ρ2o

)
ŵ + 2ε2

3ρo
γ̂
)

=

E
1−2ν

{
2ε2

3ρo
γ̂ + 1

1+ν

[
2νŵ +

(
(1− ν)ρo + (1 + ν) ε2

3ρo

)
γ̂
]}

ε2δo

(
2
3 ŵ + ρo

(
1
3 + ε2

5ρ2o

)
γ̂
) .

This equation has the form

aŵ + bγ̂

cŵ + dγ̂
=
eŵ + gγ̂

hŵ + kγ̂
⇐⇒ (dg−bk)γ̂2+(cg+de−ak−bh)ŵγ̂+(ce−ah)ŵ2 = 0,

(5.14)

with

a := 2E(1 + ν), b := 2E(1 + ν2)ρo,

c := ρ2
oδo

(
1 +

ε2

3ρ2
o

)
(1 + ν)2(1− 2ν), d :=

2

3
ε2ρoδo(1 + ν)2(1− 2ν),

e :=
2Eν

(1 + ν)(1− 2ν)
,

g :=
E

1− 2ν

(
ε2

ρo
+

1− ν
1 + ν

ρo

)
,

h :=
2

3
ε2δo, k := ε2ρoδo

(
1

3
+

ε2

5ρ2
o

)
.

The solutions of (5.14) are

γ̂± = K±ŵ, with

K± :=
ak + bh− de− cg ±

√
(ak + bh− de− cg)2 − 4(dg − bk)(ce− ah)

2(dg − bk)
;
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hence, in this case, the shell has two vibrational frequencies:

ω2
± :=

2E
(
(1 + ν) + (1 + ν2)ρoK±

)

ρ2
oδo(1 + ν)2(1− 2ν)

((
1 + ε2

3ρ2o

)
+ 2ε2

3ρo
K±

) .

5.1.3 Parallel-Wise Twist Vibrations

By parallel-wise displacements we mean displacements along the directions tan-

gent to the parallel curves ϑ = const on the middle surface, i.e., along the direc-

tion of the vector field e<2>. Thus, the only scalar parameter to be taken into

account in this case is a<2>, and the governing equation is (5.2), which reads:

a<2>
′′ + cotϑ a<2>

′ − cot2ϑ a<2> =
ρ2
oδo
G

(
1 +

ε2

3ρ2
o

)
ä<2>. (5.15)

Again, with a view toward solving this PDE, we tentatively write:

a<2>(ϑ, t) = â<2>(ϑ) cosωt,

and quickly find that, on choosing a twisting displacement of the form:

â<2>(ϑ) = a sinϑ cosϑ, a = a constant, (5.16)

a<2> solves (5.15) with

ω2 =
5G

ρ2
oδo

(
1 + ε2

3ρ2o

) =
5E

2ρ2
oδo

(
1 + ε2

3ρ2o

)
(1 + ν)

.

For any fixed time t, the displacement is maximum in magnitude at ϑ = π
4

and ϑ = 3
4π, and null for ϑ = π

2 (Fig. 5.2); note also that, although e<2> is not

defined for ϑ = 0 and ϑ = π, we have

lim
ϑ→0+

a<2>(ϑ, t) = lim
ϑ→π−

a<2>(ϑ, t) = 0.
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S

ϑ

â<2>
(

π
2

)
= 0

â<2>(0) = 0

â<2>(π) = 0

1

Figure 5.2: Parallel-wise twist displacements given by (5.16), with a > 0.

5.1.4 Parallel-Wise Shear Vibrations

The last type of vibrational mode we examine is a shear vibration along the

direction e<2>, in which transversal fibers rotate about their mid point on the

middle surface, which does not move (Fig. 5.3). In these circumstances, the only

nonzero scalar parameter field is ϕ<2>, whose evolution is ruled by equation

(5.5), which becomes:

ε2

ρ2
o

(
ϕ<2>

′′ + cotϑ ϕ<2>
′ + (1− cot2ϑ)ϕ<2>

)
− 3ϕ<2> =

ε2δo
G

(
1 +

3

5

ε2

ρ2
o

)
ϕ̈<2>.

(5.17)

Note that, if ε and ρo are given the values measured by Yang et al. [28], i.e.,

ε = 15.3 Å and ρo = 70.7 Å, then 3ε2

5ρ2o
≈ 0.024; hence, if this term is neglected

with respect to 1, we get an approximated expression of the shear vibrational

frequency, that does not depend on the radius of the middle surface:

ω̃2 =
3G

ε2δo
=

3E

2ε2δo(1 + ν)
.
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e<2>

S

1

Figure 5.3: Parallel-wise shear displacements.

On the other hand, if we consider the exact equation, we find that

ϕ<2>(ϑ, t) = ϕ̂<2>(ϑ) cosωt, with ϕ̂<2>(ϑ) = a sinϑ,

solves (5.17) with

ω2 =
G

3δo ε2
(

1 + 3
5
ε2

ρ2o

) =
E

6δoε2
(

1 + 3
5
ε2

ρ2o

)
(1 + ν)

.

Analogously to the previous case, the shear tends to vanish at ϑ = 0 and ϑ = π

and attains its maximum at ϑ = π
2 .

In both the approximated and exact cases, we see that the vibrational fre-

quency diverges as ε→ 0: inducing a parallel-wise shear vibrational mode, and

measuring the corresponding frequency, would be very difficult and perhaps

also scarcely conclusive.
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Chapter 6

Directions for Future Research

6.1 Multiscale Modeling of Spherical Capsids

A relevant open problem is the construction of a suitable multiscale mechanical

model for spherical capsids. By multiscale model we mean a bottom-up sequence

of modeling steps, from Molecular Dynamics to Continuum Mechanics, via an

intermediate coarse-grained model. Such a sequence aims to correlate the in-

teractions of capsid particles at the nanoscopic scale with the elastic moduli

characterizing a capsid at the macroscopic scale (the Young’s modulus and the

Poisson’s ratio, or the six technical moduli defined in Section 4.3, according to

whether the capsid is thought of as isotropic or transversely isotropic, respec-

tively). The scale described by the coarse-grained model can be termed meta-

nanoscopic. For example, as it has been done for carbon nanotubes [4], a bridge

between the continuum and atomistic scales could be built up by assuming en-

ergy conservation between scales: equating the continuum stored elastic energy

to the coarse-grained stored elastic energy provides relationships between the

elastic moduli and the parameters of the coarse-grained model; furthermore,

values of these parameters should be inferred from Molecular Dynamics simu-

lations or experimental procedures, thus completing the scale bridging.

As to protein assemblies, Freddolino et al. [8] performed Molecular Dynamics
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simulations of a whole STMV (RNA plus capsid assembly) and of its capsid

alone. As to coarse-grained models that can be applied to the study of such

structures, two examples (both belonging to the category of the Elastic Network

Models) are the Anisotropic Network Model and the Gaussian Network Model

[1, 6].

6.2 Full Capsids in a Hydrostatic Environment

Another open problem consists in studying the vibrations of a full spherical

capsid placed in a hydrostatic environment. In this case, beside the inertial

distance force, the load system acting on the capsid consists also of

(i) an internal pressure, exerted by the genome packed inside the shell;

(ii) an external pressure exerted by the solvent in which the capsid floats.

Both these pressure fields are uniform in magnitude and both are ‘live’ loads,

in the sense that their direction depends on the motion and that, moreover,

the magnitude of the internal pressure depends on the current volume of the

cavity filled by the genome. The referential counterparts of the internal and the

external pressures are represented, respectively, by the surface contact loads

c−o (x, t) and c+
o (x, t) (cf. subsection 4.1.2; here, we add time dependence to

stress the fact that these loads depend on the motion of the body). In the

following two subsections, we specify how these loads are related to the motion

of the shell. To this aim, we resort to the procedure set forth in [20].

Consider the motion of the shell-like region G, given by the mapping

G 3 p 7→ y(p, t) = p+ u(p, t) ∈ E ,

with u as in (3.1). We call Y (p, t) := ∇y(p, t) the motion gradient. We have

that

Y (p, t) = I +H(p, t),
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where H := ∇u is the displacement gradient and I is the identity tensor on V.

We presume, as usual, detY > 0 in G.

6.2.1 Genome Pressure

We may consider the genome behaving as a compressible non-viscous fluid ;

hence, it exerts on the current inner surface y(S−, t) a pressure πi of magnitude

inversely proportional to the volume of the three-dimensional region wrapped

by y(S−, t). Denoting this region by 〈y(S−, t)〉, we have

πi = χ
(
vol 〈y(S−, t)〉

)−1
, (6.1)

where χ > 0 is constant. Therefore, this pressure has a non-local character. If

m and n are, respectively, the unit normal vector fields over S− and y(S−, t),

it follows from the divergence theorem that

vol 〈y(S−, t)〉 = −1

3

∫

y(S−,t)
y ·m = −1

3

∫

S−
(p+ u) · Y∗n, (6.2)

where we have set y := y − o; Y∗ := (detY )Y −T is the cofactor1 of Y , and

m = |Y∗n|−1 Y∗n. Thus, by the second equality of (6.2), we can rewrite (6.1)

as

πi = κ

(∫

S−
(p+ u) · Y∗n

)−1

, with κ := 3χ.

The vector field representing this pressure in the referential configuration of the

shell is given by

c−o (x, t) = πi Y
−
∗ (x, t)n(x) = κ

(∫

S−
(p+ u) · Y∗n

)−1

Y −∗ (x, t)n(x). (6.3)

Now, as we assume small strains, linearization of Y∗ in (6.3) with respect to the

smallness parameter e := |H| is needed [19]. This linearization, after scaling

1Here, Y −T :=
(
Y T

)−1
.
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back the resulting relation by letting e = 1, yields

Y∗ = I + H̃, with H̃ = (trH) I −HT = (Divu) I −∇uT . (6.4)

Thus, we finally obtain

c−o (x, t) = κ

{∫

S−
(p+ u) ·

(
I + H̃

)
n

}−1 (
I + H̃

−
(x, t)

)
n(x). (6.5)

6.2.2 Solvent Pressure

The pressure exerted by the solvent on the current outer surface y(S+, t) of the

shell is uniform in magnitude, but its direction varies due to the variation of

the normal direction with motion. Hence, this pressure has a local character.

Again, this load is represented, in the referential configuration, by the vector

c+
o (x, t) = −πoY +

∗ (x, t)n(x),

where πo > 0 is constant. By linearization of Y +
∗ , we get

c+
o (x, t) = −πo

(
I + H̃

+
(x, t)

)
n(x), (6.6)

where H̃ is defined as in (6.4).

Note that, because in this problem the loads c+
o and c−o are nonzero, in

addition to the inertial distance force qino and couple rino , a non-inertial distance

force qnio and a non-inertial distance couple rnio per unit area shall be present

as well. In particular, equations (4.26) to (4.31) make up an integro-differential

system, due to the fact that the pressure of the genome depends on the current

volume of the cavity in which it is packed.



Conclusions

We have addressed the problem of studying natural vibrations of spherical viral

capsids (with particular reference to the STMV capsid) by employing a linear

theory of elastic shells that accounts for thickness distension. Starting from the

general assumption of transversely isotropic response with respect to the radial

direction – an assumption that is thought to better reflect the rotational sym-

metries of the capsomers with respect to that direction – we have specialized

the governing equations in the subcase of homogeneous and isotropic response,

and we have found a few cases in which closed-form solutions can be arrived

at. Such simple cases (among which, for example, radial and parallel-wise vi-

brations) might be considered as a reference to infer a correct evaluation of

Young’s modulus and Poisson’s ratio for a spherical capsid, when thought of as

an isotropic body, by carrying out experiments that induce the relative vibra-

tional modes. We believe that this would be a major achievement, given that,

in spite of the fact that capsids are rather thin, the available experiments are

used in combination with formulae from three-dimensional linear elasticity that

are only valid in bulk.

Finally, we have set forth two open problems: (i) to put together a multiscale

mechanical model of spherical capsids, capable to bridge the atomistic and

continuum scales, so as to yield a nanoscopically-informed continuum theory

of such structures; (ii) to study the vibrations of full spherical capsids in a

hydrostatic environment, thus by taking into account both the internal pressure,

exerted by the genome that fills the shell cavity, and the external pressure,
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exerted by the solvent on the outer surface of the capsid.
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