Discussioni su programma di analisi 1 e 2: numeri complessi, calcolo di una o più variabili reali, equazioni differenziali ordinarie.

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

Condizione di regolarità (superf.)

09/05/2024, 15:01

Sto cercando in tutti i modi di capire questo concetto di analisi 2:

L'argomento è "superficie regolare", io so che una superficie regolare (similmente a una curva regolare) ha la richiesta aggiuntiva di avere la matrice jacobiana (vedi sotto nella pic) con rango massimo, quindi due, oppure equivalentmenete se ha le due righe linearmente indipendenti. E fin qua ci sono da algebra lineare.

Tuttavia online leggo:
Immagine
perché il fatto che siano linearmente indipendenti coincide con:
1) le derivate delle componenti non siano tutte nulle in un punto?
2) che a sua volta si traduce sulla condizione (non negatività) dei quadrati dei minori?

OSS:su punto 1) se anche io avessi un punto in cui non si annullano le due righe della matrice potrebbero benissimo essere L.D nella mia testa. E quindi contravverrebbero alla richiesta di L.I.

Non capisco come dimostrare che sono tutti se e solo se. Vorrei chiedervi qualche aiuto perché non riesco a uscirne. :oops:

Re: Condizione di regolarità (superf.)

10/05/2024, 22:02

Mettiamoci in $\RR^3:$ dati due vettori $u = (u_x, u_y, u_z)$ e $v = (v_x, v_y, v_z)$, questi sono linearmente indipendenti se e solo se il prodotto vettore $u \times v$ è diverso dal vettore nullo.
Chi è $u \times v$? E' lo sviluppo formale del determinante:

$ | ( i , j , k ),( u_x , u_y , u_z ),( v_x , v_y , v_z ) | = (u_y v_z - u_z v_y, u_z v_x - u_x v_z, u_x v_y - u_y v_x) $

In particolare, un vettore è diverso dal vettore nullo se e solo se la sua norma è diversa da zero, per cui, mettendo insieme queste due cose, due vettori di $\RR^3$ sono linearmente indipendenti se e solo se $ || u \times v || \ne 0 $. Ovvero, andando in componenti, se e solo se

$[u_y v_z - u_z v_y]^2 + [u_z v_x - u_x v_z]^2 + [u_x v_y - u_y v_x]^2 \ne 0 $

Se ora applichi questo ragionamento ai vettori date dalle derivate parziali della parametrizzazione di una certa superficie, hai esattamente ciò che ti dice il libro.

In alternativa:
Ricordiamo anche che una matrice ha rango $k$ se almeno uno dei suoi minori di ordine $k$ ha determinante diverso da zero.
Nel nostro caso, dato che vogliamo che la matrice jacobiana abbia rango 2, dobbiamo controllare che almeno uno dei suoi minori di ordine 2 abbia determinante non nullo.
Detto diversamente, ci va "male" quando tutti e 3 i minori hanno determinante nullo.
Un modo per vedere subito che il determinante di almeno uno dei minori è non nullo è fare la somma dei quadrati di questi determinanti: essendo una somma di quadrati, infatti, questa può venir nulla se e solo se tutti i suoi addendi sono nullo, ovvero solo quando tutti questi determinanti sono nulli.

Per la domanda 1), in realtà hai ragione tu: mentre per una curva, essendo una funzione da $\gamma: \RR \to RR^n$, uno dice che la curva è regolare se $||\gamma'|| \ne 0$, ovvero se le derivate delle componenti non sono tutte nulle in uno stesso punto; nel caso delle superfici può effettivamente capitare ciò che dici tu
Rispondi al messaggio


Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010.
©2000— Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.