Passa al tema normale
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

Un fatto curioso (alias Gli scherzi della completezza)

22/05/2006, 13:56

Consideriamo il campo $Q$ dei razionali ed estendiamolo con $sqrt(2)$, otteniamo il campo $Q[sqrt(2)]={a+bsqrt(2),a,b\inQ}$. Ci chiediamo quanti sono gli automorfismi di $Q[sqrt(2)]$ che fissano $Q$. Essi sono $2$ e precisamente l'identità e quello che manda $a+bsqrt(2)$ in $a-bsqrt(2)$.
Osserviamo che l'estensione di $Q$ è stata fatta per mezzo di una radice di un polinomio di grado $2$, e precisamente $x^2-2$. Se ora estendiamo $Q$ con una radice di un polinomio irriducibile di grado $n$ si otterrà un campo i cui automorfismi che fissano $Q$ sono esattamente $n$ (la dimostrazione di questo fatto non è banalissima, ma credeteci)...
l'idea è quindi che man mano che aumento il "grado dell'estensione", aumentano anche gli automorfismi... Cosa succede allora se il grado dell'estensione diventa infinito? il buon senso direbbe che ci sono infiniti autorfismi che fissano $Q$...
Bene

mostrare che l'unico automorfismo di $R$ che fissa $Q$ è quello identico.

22/05/2006, 17:00

Allora, questo lo so! :shock:
Ma problemi un po' più semplici?!?!?!?!?

22/05/2006, 17:19

Ma io non capisco se questi Uber se li inventa o li trova da qualche parte :shocked:

22/05/2006, 18:59

Osserva che $F$ è un campo di caratteristica $0$ allora, a meno di isomorfismi, il campo $F$ contiene $QQ$ e ogni automorfismo del campo $F$ induce l'identità su $QQ$. Questo perchè $QQ$ è il sottocampo minimo di $F$ cioè il sottocampo generato dall'unità. Quindi il problema proposto da Uber è provare che l'unico auomorfismo del campo reale è l'identità.

Sia $f$ un automorfismo di $RR$. Cominciamo ad osservare che $f$ è necessariamente monotona crescente. Infatti per $x,y in RR$ con $x<y$ è $y-x>0$ quindi esiste $z in RR$ tale che $z^2=y-x$ pertanto, ricordando che $f$ è un automorfismo di campi, è
$f(y)-f(x)=f(y-x)=f(z^2)=f(z)^2>0$
ossia $f(x)<f(y)$. Di conseguenza, poichè $f$ fissa $QQ$, $f$ è necessariamente l'applicazione identica.

22/05/2006, 20:57

bravo ficus...

gli esercizi che metto in genere li scelgo fra gli esercizi semplici
e/o carini che mi capita di fare e/o studiare...
se volete esercizi più semplici, cercherò di accontentarvi.
vi faccio notare però, che mentre gli esercizi di teoria
dei gruppi necessitavano di alcune conoscenze,
quest'ultimo necessitava solo di un'idea e di nessuna conoscenza

22/05/2006, 21:00

Bhè per esempio io non so cosa è un automorfismo

22/05/2006, 21:15

ma te non stai neanche all'università!!
è una cosa semplice semplice che ti spiegano in
qualunque corso di algebra lineare... che è un corso che
si fa praticamente in tutte le discipline scientifiche.

Trattasi comunque di una funzione bijettiva di un insieme in
sè, che ne conserva la struttura... che significa?
se in questo insieme c'è una somma, si vuole che l'immagine
della somma sia la somma delle immagini... la stessa cosa per
il prodotto, se c'è un prodotto...
poichè in $Q$ e in tutte le sue estensioni ci sono somma e prodotto
....tira tu le somme

22/05/2006, 21:51

Ok penso di aver capito grazie :)

22/05/2006, 21:59

è comunque piacevole che un ragazzo del liceo
si interessi a queste cose...

22/05/2006, 22:14

Bhè penso che anche tu ti ci interessavi quando frequentavi il liceo, altrimenti perché avresti scelto matematica? :)
Rispondi al messaggio


Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010.
©2000— Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.