Passa al tema normale
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

Trasformata di Fourier in $L^2(RR^n)$

06/01/2024, 22:07

Sapendo che $f in L^2(RR^n)$, allora vale $lim_(epsilon->0+)\int_(RR^n)e^(-i<x,xi> -epsilon|x|)f(x)dx=\mathcal{F}_2f(xi)$ in $L^2(RR^n)$, dove $\mathcal{F}_2f$ indica la trasformata di Fourier in $L^2(RR^n)$.
Intanto al primo termine dopo il limite abbiamo una trasformata di Fourier in $L^1(RR^n)$, ovvero $\mathcal{F}_1(e^(-epsilon|x|)f(x))(xi)$ e quindi in teoria per essere ben posta si dovrebbe avere $e^(-epsilon|x|)f(x)inL^1(RR^n)$, ma non mi risulta si possa evincere in qualche modo...
Inoltre per la risoluzione avevo pensato di considerare la successione ${e^(-|x|/n)f(x)}_{ninNN}$ che converge in $L^2(RR^n)$ a $f(x)$ e inoltre usando quindi che è una successione di Cauchy e teorema di Parseval si ottiene la convergenza in $L^2(RR^n)$ della successione ${mathcal{F}_1(e^(-|x|/n)f(x))}_{ninNN}$ e quindi necessariamente essa deve convergere a $\mathcal{F}_2f$ (notare che $epsilon=1/n->0^+$ per $n->+infty$).
Non so se però sia tutto giusto, quindi se qualcuno riesce a darmi una mano, grazie mille.

Re: Trasformata di Fourier in $L^2(RR^n)$

09/01/2024, 13:32

andreadel1988 ha scritto:si dovrebbe avere $e^(-epsilon|x|)f(x)inL^1(RR^n)$, ma non mi risulta si possa evincere in qualche modo...

Si, è vero, puoi togliere il "dovrebbe". Per dimostrarlo, usa la disuguaglianza di Cauchy-Schwarz.
Rispondi al messaggio


Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010.
©2000— Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.