Sistemi di equazioni con numeri Complessi

Messaggioda kapooo » 20/06/2007, 11:41

Salve a tutti,
sono un nuovo iscritto ed è veramente ottimo questo sito. Complimenti a tutti. Veniamo a noi però. Il mio problema è riuscire a risolvere un sistema formato da equazioni con numeri complessi. Come si procede?? Non avendo avuto mai a che fare con sistemi complessi non so da che parte rifarmi. Penso che si debba trovare z in una delle 2 equazioni e sostituirla nell'altra (semplice a dirsi ma non a farsi) Ho provato in tutti i modi sostituendo ad $z=a+ib$ oppure $z= rhoe^(itheta)$ ma arrivo sempre a qualcosa di irrisolubile.

Alla fine mi sono accorto che la seconda equazione altro non è che una circonferenza di centro $ (sqrt(3)-1)(1+i) $ e raggio $ sqrt(2)(sqrt(3)-1)$ (sempre se non sbaglio)

Qualcuno può darmi una mano?? Questo è il testo del problema:

$ {(sqrt(3)|z|^2=z^2- barz^2),(|z-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2):}$

Grazie a tutti
kapooo
Starting Member
Starting Member
 
Messaggio: 1 di 27
Iscritto il: 20/06/2007, 11:10

Re: Sistemi di equazioni con numeri Complessi

Messaggioda nicola de rosa » 20/06/2007, 11:52

kapooo ha scritto:Salve a tutti,
sono un nuovo iscritto ed è veramente ottimo questo sito. Complimenti a tutti. Veniamo a noi però. Il mio problema è riuscire a risolvere un sistema formato da equazioni con numeri complessi. Come si procede?? Non avendo avuto mai a che fare con sistemi complessi non so da che parte rifarmi. Penso che si debba trovare z in una delle 2 equazioni e sostituirla nell'altra (semplice a dirsi ma non a farsi) Ho provato in tutti i modi sostituendo ad $z=a+ib$ oppure $z= rhoe^(itheta)$ ma arrivo sempre a qualcosa di irrisolubile.

Alla fine mi sono accorto che la seconda equazione altro non è che una circonferenza di centro $ (sqrt(3)-1)(1+i) $ e raggio $ sqrt(2)(sqrt(3)-1)$ (sempre se non sbaglio)

Qualcuno può darmi una mano?? Questo è il testo del problema:

$ {(sqrt(3)|z|^2=z^2- barz^2),(|z-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2):}$

Grazie a tutti


la seconda puoi scriverla così:


$|z-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2)->|z-(sqrt(3)-1)|^2|i+1|^2=2(sqrt(3)-1)^2->|z-(sqrt(3)-1)|^2=(sqrt(3)-1)^2->|z-(sqrt(3)-1)|=+-(sqrt(3)-1)$

ora puoi proseguire calcolando $z$ e sostituendolo nella prima per vedere se la soddisfa

In altro modo:nota la particolarità della prima:

$z^2-barz^2=(z-barz)(z+barz)=2iIm{z}*2Re{z}=4iIm{z}Re{z}$ ed è quindi un numero immaginario
Ma $sqrt(3)|z|^2$ è un numero reale per cui la prima ha solo soluzione $z=0$ che soddisfa anche la seconda. Per cui l'unica soluzione è $z=0$
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 1738 di 2040
Iscritto il: 07/05/2006, 16:33

Re: Sistemi di equazioni con numeri Complessi

Messaggioda cavallipurosangue » 20/06/2007, 12:03

nicola de rosa ha scritto:

$|z-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2)->|z-(sqrt(3)-1)|^2|i+1|^2=2(sqrt(3)-1)^2


C'è qualcosa che non mi torna in qesto passaggio... Come fai a metter in evidenza in quel modo $|1+i|^2$ ?
Unipi Official Formula SAE team
Immagine Immagine http://www.eteam-unipi.it
Avatar utente
cavallipurosangue
Cannot live without
Cannot live without
 
Messaggio: 2498 di 3900
Iscritto il: 05/05/2005, 21:49
Località: Livorno

Messaggioda kapooo » 20/06/2007, 12:32

Grazie tantissime delle risposta ma una domanda sorge spontanea:

Ma si può dividere un valore assoluto in quel modo??
kapooo
Starting Member
Starting Member
 
Messaggio: 2 di 27
Iscritto il: 20/06/2007, 11:10

Re: Sistemi di equazioni con numeri Complessi

Messaggioda nicola de rosa » 20/06/2007, 13:07

cavallipurosangue ha scritto:
nicola de rosa ha scritto:

$|z-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2)->|z-(sqrt(3)-1)|^2|i+1|^2=2(sqrt(3)-1)^2


C'è qualcosa che non mi torna in qesto passaggio... Come fai a metter in evidenza in quel modo $|1+i|^2$ ?


chiedo scusa avevo capito

$|(z-(sqrt(3)-1))(1+i)|^2=2(sqrt(3)-1)^2)->|z-(sqrt(3)-1)|^2|i+1|^2=2(sqrt(3)-1)^2$

per cui segui la seconda alternativa proposta che subito porta alla conclusione giusta
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 1740 di 2040
Iscritto il: 07/05/2006, 16:33

Messaggioda kapooo » 20/06/2007, 13:54

Ho fatto un pò di calcoli e devo dire che la seconda soluzione ha una "signorilità" impressionante. vediamo se ho capito bene però:

$z^2-barz^2=(z-barz)(z+barz)= {Re(z)+Im(z)+Re(z)-Im(z)}{Re(z)+Im(z)-Re(z)+Im(z)} = 2iIm{z}*2Re{z}=4iIm{z}Re{z}$

è che essendo a questo punto il secondo termine di questa equazione solo Reale infatti $ 4iIm{z}Re{z} = sqrt(3)(Re(z)^2+Im(z)^2)$ allora necessariamente solo il valore $z=0$ renderà vera l'uguaglianza.

A questo punto basta sostituire $z=0$ alla seconda equazione e verificare se è verificata ovvero ponendo $z=0$ abbiamo:

$(|-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2) -> |1-sqrt(3)|^2*|1+i|^2=2(sqrt(3)-1)^2 -> (sqrt(3)-1)^2 = (sqrt(3)-1)^2 $

E quindi tutto è verificato con $z=0$.

Potresti controllare se i miei passaggi algebrici e le mie considerazioni sono corrette??

Grazie ancora
kapooo
Starting Member
Starting Member
 
Messaggio: 3 di 27
Iscritto il: 20/06/2007, 11:10

Messaggioda nicola de rosa » 20/06/2007, 14:17

kapooo ha scritto:Ho fatto un pò di calcoli e devo dire che la seconda soluzione ha una "signorilità" impressionante. vediamo se ho capito bene però:

$z^2-barz^2=(z-barz)(z+barz)= {Re(z)+Im(z)+Re(z)-Im(z)}{Re(z)+Im(z)-Re(z)+Im(z)} = 2iIm{z}*2Re{z}=4iIm{z}Re{z}$

è che essendo a questo punto il secondo termine di questa equazione solo Reale infatti $ 4iIm{z}Re{z} = sqrt(3)(Re(z)^2+Im(z)^2)$ allora necessariamente solo il valore $z=0$ renderà vera l'uguaglianza.

A questo punto basta sostituire $z=0$ alla seconda equazione e verificare se è verificata ovvero ponendo $z=0$ abbiamo:

$(|-(sqrt(3)-1)(1+i)|^2=2(sqrt(3)-1)^2) -> |1-sqrt(3)|^2*|1+i|^2=2(sqrt(3)-1)^2 -> (sqrt(3)-1)^2 = (sqrt(3)-1)^2 $

E quindi tutto è verificato con $z=0$.

Potresti controllare se i miei passaggi algebrici e le mie considerazioni sono corrette??

Grazie ancora

correttissimi
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 1742 di 2040
Iscritto il: 07/05/2006, 16:33

Messaggioda kapooo » 20/06/2007, 14:49

Grazie tante
kapooo
Starting Member
Starting Member
 
Messaggio: 4 di 27
Iscritto il: 20/06/2007, 11:10


Torna a Analisi Matematica

Chi c’è in linea

Visitano il forum: Nessuno e 6 ospiti