Messaggioda nicola de rosa » 28/09/2006, 19:03

Thomas ha scritto:I didn't say there is a minimum in 0, but that there is a minimum (positive) in $[-\pi,\pi]$... it can be in zero (anyway, in 0 the function is not defined but can be extended by continuity), but we don't care...

But I had to check that the limit in zero existed!! ... in fact Weiestrass theorem tells us that there is a minimum only if the function is continuos...

done that, I observede that the minimum is positive and this proved the existence of such a $c$...

Also I have made the same demonstration and the conclusion is
$c<=1/2*(ln(1-2*p*q*(1-cosx))/(-x^2))$
Now because $0<p<=1$, $0<q<=1$, then $0<=2p*q*(1-cosx)<=1$ and this implicates that $0<=1-2p*q*(1-cosx)<=1$ and this implicates that $(ln(1-2*p*q*(1-cosx))<=0 AAx in [-pi,pi]$. But also $-1/x^2<0 AAx in [-pi,0)$ U$(0,pi]$ and for this reason $1/2*(ln(1-2*p*q*(1-cosx))/(-x^2))>0 AAx in [-pi,pi]$ and this proves our thesis.
Then also in $x=0$ there aren't problems because $lim_(x->0)1/2*(ln(1-2*p*q*(1-cosx))/(-x^2))=(pq)/2$
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 377 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Camillo » 03/10/2006, 09:10

Hint, taking advantage of triangle inequality :

$| pe^(iqx) +qe^(-ipx) | <= |pe^(iqx) | +| qe^(-ipx)| = p+q = 1 .........................
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 1792 di 10714
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Precedente

Torna a Questioni tecniche del Forum (NON di matematica)

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite