Inequality

Messaggioda Camillo » 26/09/2006, 12:09

Let be : $p,q > 0 $ such that $ p+q = 1 $ .
Prove that exists $ c > 0 $ such that $AA x in [ -pi; pi]$ :

$ |pe^(iqx) + q e^(-ipx) | <= e^(-cx^2) $
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 1763 di 10714
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Re: Inequality

Messaggioda nicola de rosa » 27/09/2006, 13:27

[quote="Camillo"]Let be : $p,q > 0 $ such that $ p+q = 1 $ .
Prove that exists $ c > 0 $ such that $AA x in [ -pi; pi]$ :
avevo commesso un errore, perciò ho tolto la mia precedente soluzione
Ultima modifica di nicola de rosa il 27/09/2006, 16:07, modificato 10 volte in totale.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 346 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Luca.Lussardi » 27/09/2006, 13:29

Ma lo scopo di questi post non era quello di rispondere in inglese?
Luca.Lussardi
Cannot live without
Cannot live without
 
Messaggio: 978 di 12722
Iscritto il: 21/05/2006, 17:59
Località: Torino

Messaggioda nicola de rosa » 27/09/2006, 13:35

Luca.Lussardi ha scritto:Ma lo scopo di questi post non era quello di rispondere in inglese?

excuse me. I have edited
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 347 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Luca.Lussardi » 27/09/2006, 13:46

Ok, thanks.
Luca.Lussardi
Cannot live without
Cannot live without
 
Messaggio: 979 di 12722
Iscritto il: 21/05/2006, 17:59
Località: Torino

Re: Inequality

Messaggioda Camillo » 27/09/2006, 17:02

nicasamarciano ha scritto:
Camillo ha scritto:Let be : $p,q > 0 $ such that $ p+q = 1 $ .
Prove that exists $ c > 0 $ such that $AA x in [ -pi; pi]$ :
avevo commesso un errore, perciò ho tolto la mia precedente soluzione


Ok we wait for your updated solution.
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 1773 di 10714
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Messaggioda Thomas » 28/09/2006, 14:22

First of all, sorry for the big number of mistakes I'm going to write :-D ...

As a firt step, it's easy to check that we can rewrite the first member this way:

$ (|pe^(iqx) + q e^(-ipx) |)^2 =(1-q)^2+q^2+2q(1-q)cosx$

with $0<q<1$

so the equation, elevating both members (the quantities are all positive):

$ (1-q)^2+q^2+2q(1-q)cosx<=e^(-(2cx^2))$

taking the logaritm of both sides we need to find $c/2$ that respects:

$(log( (1-q)^2+q^2+2q(1-q)cosx))/(-x^2)>=2c$

remembering that $x$ was in $[ -pi; pi]$, if we show that the function at the left member is limited, we have finished.

But this is true because it is obviously continuos in $[-pi,pi]\0$ and in $0$ the limit exists and is finished (with de l'hopital theorem it's also easy to evaluate it and the condition $0<q<1$ assures that this limit is positive)...
furthermore, the function is always positive.. we can so conclude that the minimum existes and is positive...


is it right??? :wink:
Thomas
Advanced Member
Advanced Member
 
Messaggio: 748 di 2223
Iscritto il: 28/09/2002, 21:44

Messaggioda Camillo » 28/09/2006, 17:25

Are you sure that the function $log[(1-q)^2+q^2+2q(1-q)cosx]/(-x^2) $ has a minimum in $ x = 0 $ ?

Anyhow there is a quicker way using triangle inequality....
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 1775 di 10714
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Messaggioda Thomas » 28/09/2006, 17:48

I didn't say there is a minimum in 0, but that there is a minimum (positive) in $[-\pi,\pi]$... it can be in zero (anyway, in 0 the function is not defined but can be extended by continuity), but we don't care...

But I had to check that the limit in zero existed!! ... in fact Weiestrass theorem tells us that there is a minimum only if the function is continuos...

done that, I observede that the minimum is positive and this proved the existence of such a $c$...
Thomas
Advanced Member
Advanced Member
 
Messaggio: 750 di 2223
Iscritto il: 28/09/2002, 21:44

Messaggioda Camillo » 28/09/2006, 18:57

Thomas ha scritto:I didn't say there is a minimum in 0, but that there is a minimum (positive) in $[-\pi,\pi]$... it can be in zero (anyway, in 0 the function is not defined but can be extended by continuity), but we don't care...

But I had to check that the limit in zero existed!! ... in fact Weiestrass theorem tells us that there is a minimum only if the function is continuos...

done that, I observede that the minimum is positive and this proved the existence of such a $c$...


OK correct, I misunderstood your explanation .
Try also with the triangle inequality, it is very nice :D
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 1776 di 10714
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Prossimo

Torna a Questioni tecniche del Forum (NON di matematica)

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite

cron