Passaggio teoria Hamiltoniana

Messaggioda vastità » 02/07/2019, 13:15

Ciao, torno a importunarvi nello specifico per quanto riguarda l'ultimo passaggio nella pic (proprio ultima riga).

--

Cito la pagina precedente econtinuo mettendo la foto del testo a seguire

Per maggiore chiarezza nelle formule che seguiranno, denotiamo con
$u^(\lambda)=U^(\lambda)(q^\mu,p_\mu)$

Immagine

--
Spero possa bastare solo questo stralcio, in teoria sì perché deve essere una proprietà della derivazione che non vedo, insomma me viene qualcosa di diverso :oops:


Merci :)
vastità
New Member
New Member
 
Messaggio: 85 di 96
Iscritto il: 02/07/2018, 15:20

Re: Passaggio teoria Hamiltoniana

Messaggioda Nikikinki » 04/07/2019, 08:06

È una semplice derivazione di funzione composta. La variabile di derivazione è anche dentro U. Magari la conosci come regola della catena? È solo un nome inventato per confondere le acque per me, ma ho notato che ad alcuni induce la giusta epifania.
Nikikinki
Average Member
Average Member
 
Messaggio: 622 di 715
Iscritto il: 11/08/2017, 07:33

Re: Passaggio teoria Hamiltoniana

Messaggioda vastità » 04/07/2019, 08:36

Ciao Nikikinki, grazie per la risposta.

Ti dirò, in realtà sono giunto qui dopo averprovato la regola della catena, devo aver sbagliato qualcosa perché non mi torna. Mumble.
vastità
New Member
New Member
 
Messaggio: 86 di 96
Iscritto il: 02/07/2018, 15:20

Re: Passaggio teoria Hamiltoniana

Messaggioda Nikikinki » 04/07/2019, 08:49

Visto che sono senza PC ho difficoltà a scrivere le formule. Scrivi tu come hai applicato la regola di derivazione in modo che mi sia più semplice farti notare dove sia l'errore, anche se non ci sono molti conti da fare il risulto si ottiene direttamente. Magari, visivamente, in quel risultato inverti l'ordine delle due derivate parziali bel secondo addendo e non farti ingannare dal fatto che a volte si usa u e a volte U, è la stessa cosa, c'è una ugualglianza tra le due.
Nikikinki
Average Member
Average Member
 
Messaggio: 624 di 715
Iscritto il: 11/08/2017, 07:33

Re: Passaggio teoria Hamiltoniana

Messaggioda vastità » 12/07/2019, 11:27

Ciao, purtroppo tra mille esami e argomenti da studiare non sono riuscito a ritornare sull'argomento fino ad oggi (l'avevo accetata come tale, ma vorrei capirla)

In quanto alla tua richiesta avevo così fatto (lascio perdere gli indici per comodità):

$(\partialL)/(\partial q)+(\partialL)/(\partial U)*((\partialU)/(\partial q)+(\partialU)/(\partial p)*(\partialp)/(\partial q))$

:)
vastità
New Member
New Member
 
Messaggio: 88 di 96
Iscritto il: 02/07/2018, 15:20

Re: Passaggio teoria Hamiltoniana

Messaggioda Nikikinki » 12/07/2019, 17:38

L'ultimo addendo non ha ragione di esistere, stai derivando solo rispetto a $q$. Ricordati che nello spazio delle fasi $p$ sarà anche il momento coniugato a $q$ ma non dipende da essa. Quindi se proprio vuoi scrivere quell'ultimo addendo la derivata dell'impulso rispetto alla coordinata è nullo.
Nikikinki
Average Member
Average Member
 
Messaggio: 656 di 715
Iscritto il: 11/08/2017, 07:33

Re: Passaggio teoria Hamiltoniana

Messaggioda vastità » 12/07/2019, 17:46

Ok, sarebbe

$(\partialL)/(\partial q)+(\partialL)/(\partial U)*((\partialU)/(\partial q))$

potrei essere d'accordo :P , ma...

Quei diamine delle inverse di Phi da dove saltano fuori? (mi riferisco alla pic)

Scusa ma sono un po' tonto :oops:
vastità
New Member
New Member
 
Messaggio: 89 di 96
Iscritto il: 02/07/2018, 15:20

Re: Passaggio teoria Hamiltoniana

Messaggioda Nikikinki » 12/07/2019, 19:22

Sarà sicuramente scritto sul testo perché applica quella operazione no? Comunque la trasformata di legendre è usata per passare dalla lagrangiana all'hamiltoniana pur di raddoppiare le equazioni differenziali (da n al secondo ordine a 2n al primo ordine come puoi vedere). Per valutare il contesto andrebbe letto tutto ciò che c'è prima di questo stralcio che hai riportato, francamente non ricordo i dettagli andrebbe guardato.
Nikikinki
Average Member
Average Member
 
Messaggio: 659 di 715
Iscritto il: 11/08/2017, 07:33

Re: Passaggio teoria Hamiltoniana

Messaggioda vastità » 12/07/2019, 23:11

No certo, sono d'accordissimo sul fatto che la trasformata di Legendre passi all'hamiltoniana.

Quello su cui non ero d'accordo (nel senso che non capisco) è l'uguaglianza dei due membri dell'ultima riga, nel senso che se L tilde me lo definisce come $\tildeL=(p,u)$, allora la derivata di questa L tilde rispetto alla coordinata lagrangiana dovrebbe essere quella scritta da me nell'ultimo post, senza quella mappa di legendre.

Intendevo questo :)
vastità
New Member
New Member
 
Messaggio: 91 di 96
Iscritto il: 02/07/2018, 15:20

Re: Passaggio teoria Hamiltoniana

Messaggioda Nikikinki » 13/07/2019, 07:07

Pone $\tildeL= L o \Phi^(-1)$ . Se ci togli la trasformata ti resta la lagrangiana e non potrai mai ottenere le equazioni del moto nello spazio delle fasi.
Nikikinki
Average Member
Average Member
 
Messaggio: 662 di 715
Iscritto il: 11/08/2017, 07:33

Prossimo

Torna a Fisica, Fisica Matematica, Fisica applicata, Astronomia

Chi c’è in linea

Visitano il forum: antonio.degaetano e 32 ospiti