[EX] Two Integral Inequalities

Messaggioda gugo82 » 22/02/2013, 03:20

Exercise:

1. Let \(f,g:[a,b]\to \mathbb{R}\) be smooth functions (say, continuous functions in \([a,b]\)), let \(f\) be nonincreasing and let \(f(x)\geq 0\) and \(0\leq g(x)\leq 1\) in \([a,b]\).
Prove that:
\[\tag{S}
\int_{b-\gamma}^b f(x)\ \text{d} x \leq \int_a^b f(x)\ g(x)\ \text{d} x\leq \int_a^{a+\gamma} f(x)\ \text{d} x
\]
where:
\[
\gamma :=\int_a^b g(x)\ \text{d} x\; .
\]

Hints:
Testo nascosto, fai click qui per vederlo
For the upper inequality, consider the auxiliary function:
\[
\Delta (x) := \int_a^{a+\int_a^x g(t)\ \text{d} t} f(t)\ \text{d} t - \int_a^x f(t)\ g(t)\ \text{d} t
\]
and try to prove that \(\Delta (x)\geq 0\) in \([a,b]\).
For the lower inequality, write down the upper inequality with \(1-g(x)\) in place of \(g(x)\) and use some algebra.

2. Can (S) be modified in order to make it work also in the case \(\sup_{[a,b]} g>1\)?

Hint:
Testo nascosto, fai click qui per vederlo
Consider the normalized function \(\hat{g}(x):= \frac{1}{\sup_{[a,b]} g}\ g(x)\) and...


Another question for those who know a little Lebesgue Integration Theory:

3. Is it possible to generalize inequalities (S) for \(f\in L^1(a,b)\) and \(g\in L^\infty(a,b)\)?

Hint:
Testo nascosto, fai click qui per vederlo
Use some approximation theorem from Integration Theory.
Ultima modifica di gugo82 il 22/02/2013, 13:16, modificato 2 volte in totale.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 13667 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: [EX] Two Integral Inequalities

Messaggioda Rigel » 22/02/2013, 09:54

4. Show that the assumption \(f\geq 0\) in not necessary.

Hint:
Testo nascosto, fai click qui per vederlo
Apply (S) to the non-negative function \(f(x) - f(b)\).
Rigel
Cannot live without
Cannot live without
 
Messaggio: 2933 di 7818
Iscritto il: 13/01/2010, 08:31

Re: [EX] Two Integral Inequalities

Messaggioda gugo82 » 22/02/2013, 13:12

@ Rigel: Nice! :wink:
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 13668 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Messaggioda Paolo90 » 23/02/2013, 15:14

gugo82 ha scritto:Exercise:

1. Let \(f,g:[a,b]\to \mathbb{R}\) be smooth functions (say, continuous functions in \([a,b]\)), let \(f\) be nonincreasing and let \(f(x)\geq 0\) and \(0\leq g(x)\leq 1\) in \([a,b]\).
Prove that:
\[\tag{S}
\int_{b-\gamma}^b f(x)\ \text{d} x \leq \int_a^b f(x)\ g(x)\ \text{d} x\leq \int_a^{a+\gamma} f(x)\ \text{d} x
\]
where:
\[
\gamma :=\int_a^b g(x)\ \text{d} x\; .
\]


Testo nascosto, fai click qui per vederlo
Let
\[
\omega(x) := \int_a^{a+\int_a^x g(s)ds} f(t)dt - \int_a^x f(t)\ g(t)dt.
\]
Clearly we have that \( \omega \in C^{1}([a,b])\) and $\omega(a)=0$. Some routine calculations (in particular, using the chain rule) show that
\[
\omega'(x) = f\left(a+\int_a^x g(s)ds\right)g(x)-f(x)g(x) = \left[ f\left(a+\int_a^x g(s)ds\right)-f(x)\right] g(x).
\]
We claim that $\omega'(x)\ge 0$ for every $x \in [a,b]$. Indeed, $g(x)\ge 0$ (1) for every $x \in [a,b]$; on the other side, we have
\[
a + \int_a^x g(s)ds \le a +\int_a^x 1ds \le a+(x-a)=x
\]
since \( \sup g \le 1\); hence, using the fact that $f$ is nonincreasing, \(f\left(a+\int_a^x g(s)ds\right) \ge f(x)\) (2). Now from (1) and (2) we get $\omega'(x) \ge 0$: in particular, $\omega'(b)\ge 0$ which is the first inequality we wanted to prove.

Now, in order to prove the second inequality we consider the function
\[
\alpha(x) := \int_a^x f(s)g(s)ds - \int_{x-\int_a^xg(s)ds}^xf(t)dt
\]
Note that, exactly as $\omega$, we have $\alpha(a)=0$ and we want to prove $\alpha(b)\ge 0$. Calculations are quite similar: we get
\[
\alpha'(x)=\left[f\left(x-\int_a^xg(s)ds \right) - f(x) \right](1-g(x)) \ge 0
\]
for every $x \in [a,b]$.


gugo82 ha scritto:2. Can (S) be modified in order to make it work also in the case \(\sup_{[a,b]} g>1\)?


Testo nascosto, fai click qui per vederlo
Suppose \( \max_{[a,b]} g =M \) (it's a max by Weierstrass). Then we can apply the above argument to the normalized function
\[
\tilde{g}(x):= \frac{g(x)}{M}
\]
and we obtain
\[
\int_{b-\tilde{\gamma}}^b f(x)dx \leq \int_a^b f(x)\tilde{g}(x)dx \leq \int_a^{a+\tilde{\gamma}} f(x)dx
\]
where \( \displaystyle \tilde{\gamma} = \int_a^b \tilde{g}dx \) . Since \(\tilde{\gamma} = \frac{1}{M}\gamma \) we obtain the following version of inequality (S):
\[
\int_{b-\frac{1}{M}\gamma}^b f(x)dx \leq \frac{1}{M}\int_a^b f(x)g(x)dx \leq \int_a^{a+\frac{1}{M}\gamma} f(x)dx.
\]


gugo82 ha scritto:3. Is it possible to generalize inequalities (S) for \(f\in L^1(a,b)\) and \(g\in L^\infty(a,b)\)?


The first idea that springs to my mind is the following: we can find a sequence of continuous functions $f_n$ s.t. $f_n \to f$ in $L^1$ (by density). We can argue the same thing concerning $g$: it's true that continuous functions are not dense in $L^\infty$, but (since $\Omega = (a,b)$ has finite measure) we have $1 \in L^1(\Omega)$ and hence, by Holder, $1 g = g \in L^1$. So we have a sequence of continuous functions $g_n \to g$ in $L^1$, i.e. $\gamma_n \to \gamma$ (where $\gamma_n:=\int_a^b g_n d\mu$ and $\gamma := \int_a^b g d\mu$ as above).
But now I've run out of ideas. How can we conclude?

Thanks for the nice exercise and for your help. :wink:
"Immaginate un bravo matematico come qualcuno che ha preso dal tenente Colombo per le doti investigative, da Baudelaire per l’ispirazione, dal montatore Faussone per il rigore e l’amore per “le cose ben fatte”, da Ulisse per la curiosità, l’ardimento e l’insaziabilità di conoscenza." (AC)
Paolo90
Cannot live without
Cannot live without
 
Messaggio: 3777 di 6328
Iscritto il: 06/08/2005, 14:34

Re: [EX] Two Integral Inequalities

Messaggioda gugo82 » 01/03/2013, 23:28

@ Paolo90:

1. Ok.
Here's an alternative proof of the leftmost inequality.
Testo nascosto, fai click qui per vederlo
Let $G(x):=1-g(x)$. Obviously, $0\leq G(x)\leq 1$ therefore the rightmost inequality applies to $f$ and $G$ and it yields:
\[
\tag{1}
\int_a^b f(x)\ G(x)\ \text{d} x \leq \int_a^{a+\Gamma} f(x)\ \text{d} x
\]
with $\Gamma = \int_a^b G(x)\ \text{d} x$.
Using some algebra we find:
\[
\begin{split}
a+\Gamma &= a+\int_a^b (1-g(x))\ \text{d} x \\
&= a+(b-a)-\int_a^b g(x)\ \text{d} x \\
&= b-\int_a^b g(x)\ \text{d} x \\
&= b-\gamma\; ,
\end{split}
\]
with $\gamma = \int_a^b g(x)\ \text{d} x$, and:
\[
\begin{split}
\int_a^b f(x)\ G(x)\ \text{d} x &= \int_a^b f(x)\ (1-g(x))\ \text{d} x \\
&= \int_a^b f(x)\ \text{d} x - \int_a^b f(x)\ g(x)\text{d} x\; ;
\end{split}
\]
hence (1) rewrites:
\[
\int_a^b f(x)\ \text{d} x - \int_a^b f(x)\ g(x)\text{d} x \leq \int_a^{b-\gamma} f(x)\ \text{d} x
\]
or finally:
\[
\int_a^b f(x)\ g(x)\text{d} x \geq \int_{b-\gamma}^b f(x)\ \text{d} x
\]
which is the claim.

2. Correct.

3. Your idea is the right one. Follow it.

Neverthless, one can give an alternative proof (which does not make use of approximation) on the following lines:
Testo nascosto, fai click qui per vederlo
Let $f\in L^1(a,b)$ and $g\in L^\infty(a,b)$ satisfy the assumptions; w.l.o.g., we can assume $f$ and $g$ be defined and finite everywhere in $]a,b[$.
Then (in what follows $\text{d} x$ stands for the Lebesgue measure):
\[
\begin{split}
\int_a^{a+\gamma} f(x)\ g(x)\ \text{d} x - \int_a^b f(x)\ g(x)\ \text{d} x &= \int_a^{a+\gamma} f(x)\ g(x)\ \text{d} x - \int_a^{a+\gamma} f(x)\ g(x)\ \text{d} x \\
&\phantom{=}- \int_{a+\gamma}^b f(x)\ g(x)\ \text{d} x\\
&= \int_a^{a+\gamma} f(x)\ (1-g(x))\ \text{d} x - \int_{a+\gamma}^b f(x)\ g(x)\ \text{d} x\\
&\geq f(a+\gamma)\ \int_a^{a+\gamma} (1-g(x))\ \text{d} x - \int_{a+\gamma}^b f(x)\ g(x)\ \text{d} x\\
&= f(a+\gamma)\ \left( \gamma - \int_a^{a+\gamma} g(x)\ \text{d} x\right) \\
&\phantom{=}- \int_{a+\gamma}^b f(x)\ g(x)\ \text{d} x\\
&= f(a+\gamma)\ \left( \int_a^b g(x)\ \text{d} x - \int_a^{a+\gamma} g(x)\ \text{d} x\right) \\
&\phantom{=}- \int_{a+\gamma}^b f(x)\ g(x)\ \text{d} x\\
&= f(a+\gamma)\ \int_{a+\gamma}^b g(x)\ \text{d} x - \int_{a+\gamma}^b f(x)\ g(x)\ \text{d} x\\
&= \int_{a+\gamma}^b (f(a+\gamma) -f(x))\ g(x)\ \text{d} x\\
&\geq 0\; ,
\end{split}
\]
which is the leftmost inequality to be proved.
The righmost inequality may be proved using the argument above.

***

@ Rigel:

4. The alternative proof given above implies that the assumption $f(x)\geq 0$ is not necessary to our inequalities to hold.

***

Exercise:

5. One can easily see that both inequalities (S) become equalities simultaneously when $g(x)=0$ or $g(x)=1$ for any fixed $f$.
Find a function $\hat{f}$ such that the converse is not true.
In other words, find $\hat{f}$ in such a way that there exists a function $\hat{g}$, which is neither identically zero nor identically one, such that both inequalities (S) become equalities.

Hint:
Testo nascosto, fai click qui per vederlo
What happens if $\hat{f}$ is symmetric with respect to $\frac{a+b}{2}$?


6 (Open question, at least for me). In general, is it possible to characterize the simultaneous equality case in both (S)?
I.e., is it possible to find all the functions $g$ such that (S) becomes a chain of equalities for any $f$?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 13686 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli


Torna a The English Corner

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite