integral

Messaggioda nicola de rosa » 23/10/2006, 16:39

1)Prove that $sum_{k=0}^{+infty}1/(2k+1)^2=pi^2/8
2)Compute $int_{0}^{1}(lnx)/(x^2-1)dx$
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 678 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda luca.barletta » 24/10/2006, 12:46

1) Consider the "triangular wave" function:

$f(x)=|x|={(x,,0<=x<=pi),(-x,,-pi<=x<0):}$

and such as $f(x)=f(x+2kpi), kinZZ$.
Since f(x) is even, we can compute its cosine transformation:

$a_0=2/piint_0^pi f(x)dx = pi$
$a_k = 2/piint_0^pi f(x)cos(kx)dx = {(0,,k=2n , ninNN),(-4/(k^2pi),,k=2n+1 , ninNN):}$

so we have:

$pi/2-4/pisum_(n=0)^(+infty) cos((2n+1)x)/(2n+1)^2$

Note that this result is consistent thank to the Dirichlet's th.
In particular, being $f(x)=x, x in [0,pi]$, we can write:

$x = pi/2-4/pisum_(n=0)^(+infty) cos((2n+1)x)/(2n+1)^2 0<=x<=pi$

and from the position $x=0$ we get

$0=pi/2-4/pisum_(n=0)^(+infty) 1/(2n+1)^2$

that is

$sum_(n=0)^(+infty) 1/(2n+1)^2 = pi^2/8$



2) Of course the following holds:

$int_{0}^{1}(lnx)/(x^2-1)dx=pi^2/8$

I'm just finding an elegant way to put down all the formulas...



Excuse for my english. I've taken some lessons from Biscardi.
Ultima modifica di luca.barletta il 24/10/2006, 12:57, modificato 1 volta in totale.
Frivolous Theorem of Arithmetic:
Almost all natural numbers are very, very, very large.
Avatar utente
luca.barletta
Moderatore globale
Moderatore globale
 
Messaggio: 370 di 4341
Iscritto il: 21/10/2002, 20:09

Messaggioda nicola de rosa » 24/10/2006, 12:50

Correct.
Only the integral remains. have you the solution? I wait for you.
Ultima modifica di nicola de rosa il 24/10/2006, 13:14, modificato 1 volta in totale.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 698 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Cheguevilla » 24/10/2006, 12:52

the seguent holds
the following...
"seguent" è biscardiano...
Immagine

Rischiavano la strada e per un uomo
ci vuole pure un senso a sopportare
di poter sanguinare
e il senso non dev'essere rischiare
ma forse non voler più sopportare.
Avatar utente
Cheguevilla
Cannot live without
Cannot live without
 
Messaggio: 791 di 3869
Iscritto il: 12/02/2003, 13:24
Località: København

Messaggioda luca.barletta » 24/10/2006, 12:56

cheguevilla ha scritto:"seguent" è biscardiano...


Only in English, please :D . "seguent" is biscardian. And now I'm going to edit...
Frivolous Theorem of Arithmetic:
Almost all natural numbers are very, very, very large.
Avatar utente
luca.barletta
Moderatore globale
Moderatore globale
 
Messaggio: 371 di 4341
Iscritto il: 21/10/2002, 20:09

Messaggioda nicola de rosa » 25/10/2006, 10:33

can nobody solve the integral?
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 718 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda luca.barletta » 25/10/2006, 13:20

I haven't got a complete solution. Only tell me if I'm on the right way.

$int_0^1 ln(x)/(x^2-1) dx = int_0^1 sum_(n=1)^(+infty) (-1)^(n+1)/n (x-1)^(n-1)/(x+1) dx$

$= sum_(n=1)^(+infty) (-1)^(n+1)/n int_0^1 (x-1)^(n-1)/(x+1) dx$

Now, with the sostitution $x-1=t$:

$sum_(n=1)^(+infty) (-1)^(n+1)/n int_(-1)^0 t^(n-1)/(t+2) dt$

Compute one step of the integral:

$int t^(n-1)/(t+2) dt=t^n/(2n) -1/2int t^n/(t+2) dt -1/(2n)$

Expliciting with respect to the integral on the right side of the equality:

$int_(-1)^0 t^n/(t+2) dt = (-1)^(n+1)/n -2int_(-1)^0 t^(n-1)/(t+2) dt$

Let denote $I(n)$ as:

$I(n) = int_(-1)^0 t^n/(t+2) dt$

We have just found the recursion:

${(I(n) = (-1)^(n+1)/n -2I(n-1)),(I(0)=ln2):}$

We need of $I(n-1)$, and with a little "brain-work" we get:

$I(n-1) = sum_(j=1)^(n-1) (-2)^(n-j+1)/j + (-2)^(n-1)ln2$

And now? Have you followed the same way?
Frivolous Theorem of Arithmetic:
Almost all natural numbers are very, very, very large.
Avatar utente
luca.barletta
Moderatore globale
Moderatore globale
 
Messaggio: 377 di 4341
Iscritto il: 21/10/2002, 20:09

Messaggioda nicola de rosa » 25/10/2006, 16:30

My way:
$sum_{k=0}^{+infty}x^(2k)=1/(1-x^2)$ $0<=x<1$ (our case)
So
$int_{0}^{1}lnx/(x^2-1)dx=int_{0}^{1}lnx*(-sum_{k=0}^{+infty}x^(2k))dx$
We can exchange two signs , integral and series and so
$int_{0}^{1}lnx/(x^2-1)dx=sum_{k=0}^{+infty}int_{0}^{1}(-x^(2k))*lnxdx$
Now per parti
$int_{0}^{1}(-x^(2k))*lnxdx=[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+int_{0}^{1}x^(2k+1)/(2k+1)*1/xdx$=
$[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+int_{0}^{1}x^(2k)/(2k+1)dx$=
$[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+[x^(2k+1)/((2k+1)^2)]_{0}^{1}$
Now the first part of integral is null $AAk=0,1,2,3..$ for $x=0$ and $x=1$ while the second part $AAk=0,1,2,3..$ is null for $x=0$ and not null for $x=1$ and that is
$int_{0}^{1}(-x^(2k))*lnxdx=1/(2k+1)^2$ $AAk=0,1,2,3..$ and
$int_{0}^{1}lnx/(x^2-1)dx=sum_{k=0}^{+infty}1/(2k+1)^2=pi^2/8$ remembering the first result.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 720 di 2040
Iscritto il: 07/05/2006, 15:33


Torna a The English Corner

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite