[EX] Solving some ODEs without any integration

Messaggioda gugo82 » 01/02/2014, 16:42

Exercise:

1. Let \(\Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\}\) be an open set made up of rays from \(\mathbf{o}=(0,0)\), let \(f,g:\Omega \to \mathbb{R}\) be two smooth \(\alpha\)-homogeneous functions with \(\alpha\neq -1\) and \((x_0,y_0)\in \Omega\) s.t. \(g(x_0,y_0)\neq 0\).
Prove that if:
\[
\tag{1}
f_y (x,y) = g_x (x,y)
\]
in \(\Omega\), then any solution of the Cauchy's problem:
\[
\tag{P}
\begin{cases}
g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\
y(x_0) = y_0
\end{cases}
\]
is implicitly defined by the following equation:
\[
\tag{2}
x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0)
\]
in a suitable neighbourhood of the initial data \((x_0,y_0)\).

2. Solve:
\[
\tag{3}
\begin{cases}
2x\ y(x)\ y^\prime (x) = x^2 -y^2(x)\\
y(\sqrt{3}) = 1\; .
\end{cases}
\]
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 15799 di 44992
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: [EX] Solving some ODEs without any integration

Messaggioda ciromario » 09/02/2014, 17:55

2) A partial solution.
A) $xyy'=1/2x^2-1/2y^2$
From (A) :
$y'(x)={x^2-y^2}/{2xy}->y'(sqrt 3)={3-1}/{2sqrt3}=1/{sqrt3}$
Deriving (A) :
B) $yy'+x(y')^2+xyy''=x-yy'$
From (B):
$y''(x)={x-2yy'-x(y')^2}/{xy}-> y''(sqrt 3)={sqrt 3-{2}/{sqrt3 }-{sqrt3}/{3}}/{sqrt3 }=0$
Deriving (B) :
C) $(y')^2+yy''+(y')^2+2xy'y''+yy''+xy'y''+xyy'''=1-(y')^2-yy''$
From (C) :
$y'''(x)={1-3(y')^2-3yy''-3xyy''}/{xy}->y'''(sqrt3)={1-3/3-0-0}/{sqrt3}=0$
and so on.
Generalizing (?), result
$y(sqrt3)=1,y'(sqrt 3)=1/{sqrt3}, y^{(i)}(sqrt 3)=0, i>=2$
Then : ${y(x)=x/{\sqrt 3} } $
ciromario
 

Re: [EX] Solving some ODEs without any integration

Messaggioda gugo82 » 13/02/2014, 11:12

Nice try... That could be a way to solve problem (3) using the classical Frobenius method (a.k.a. method of power series).
There are some passages missing, but nothing you cannot fill by yourself.

Another way consists in using formula (2) from part 1.
Testo nascosto, fai click qui per vederlo
In fact, the ODE in (3) is of the type (P) with coefficients \(f(x,y) := y^2-x^2\) and \(g(x,y) := 2xy\) satisfying (1) everywhere, therefore, any solution of the Cauchy's problem (3) satisfies:
\[
\begin{split}
x\ (y^2 - x^2) + y\ (2xy) = \sqrt{3}\ (1-3) + 1\ (2\sqrt{3})\qquad &\Leftrightarrow \qquad x\ (3y^2-x^2) =0\\
&\Leftrightarrow \qquad x\ (\sqrt{3}\ y - x)\ (\sqrt{3}\ y + x) =0\; ;
\end{split}
\]
the latter equation forces \(y=\frac{1}{\sqrt{3}}\ x\) around \((x_0,y_0)=(\sqrt{3} ,1)\), hence the function:
\[
y(x;\sqrt{3} ,1) = \frac{1}{\sqrt{3}}\ x\quad ,\ x\in ]0,\infty[
\]
is the maximal solution of (3).1


Any idea for part 1?
Testo nascosto, fai click qui per vederlo
Hint: Use Euler's theorem for homogeneous functions.

Note

  1. The domain of the solution is \(]0,\infty[\) because the ODE in (3) degenerates when \(x=0\) or \(y=0\); therefore, the (maximal) domain \(]X_-,X^+[\) of \(y(\cdot ;\sqrt{3} ,1)\) must have \(X_->0\) and the solution itself had to be strictly positive in \(]X_-,X^+[\).
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 15895 di 44992
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: [EX] Solving some ODEs without any integration

Messaggioda gugo82 » 02/03/2014, 15:58

gugo82 ha scritto:1. Let \( \Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\} \) be an open set made up of rays from \( \mathbf{o}=(0,0) \), let \( f,g:\Omega \to \mathbb{R} \) be two smooth \( \alpha \)-homogeneous functions with \( \alpha\neq -1 \) and \( (x_0,y_0)\in \Omega \) s.t. \( g(x_0,y_0)\neq 0 \).
Prove that if:
\[ \tag{1} f_y (x,y) = g_x (x,y) \]
in \( \Omega \), then any solution of the Cauchy's problem:
\[ \tag{P} \begin{cases} g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\ y(x_0) = y_0 \end{cases} \]
is implicitly defined by the following equation:
\[ \tag{2} x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0) \]
in a suitable neighbourhood of the initial data \( (x_0,y_0) \).

Testo nascosto, fai click qui per vederlo
Let:
\[
\Phi (x,y) := x\ f(x,y) + y\ g(x,y)\; .
\]
Since the functions \((x,y)\mapsto x\) and \((x,y)\mapsto y\) are \(1\)-homogeneous, both products \(x\; f(x,y)\) and \(y\; g(x,y)\) are \(\alpha +1\)-homogeneous functions; hence, \(\Phi\) is an \(\alpha +1\)-homogenous function which is differentiable in \(\Omega\) whose derivatives satisfy:
\[
\begin{split}
\Phi_x (x,y) &= f(x,y) + x\ f_x(x,y) + y\ g_x(x,y)\\
&= f(x,y) + x\ f_x(x,y) + y\ f_y(x,y)\\
&= f(x,y) + \alpha\ f(x,y)\\
&= (\alpha +1)\ f(x,y)\\
\Phi_y(x,y) &= g(x,y) + x\ f_y(x,y) + y\ g_y(x,y))\\
&= g(x,y) + x\ g_x(x,y) + y\ g_y(x,y)\\
&= g(x,y) + \alpha\ g(x,y)\\
&= (\alpha +1)\ g(x,y)
\end{split}
\]
with \(\alpha +1\neq 0\), because of Euler's Theorem on positively homogeneous functions. Therefore the ODE in (P) rewrites:
\[\tag{I}
\Phi_x(x,y(x))+ \Phi_y(x,y(x))\ y^\prime (x) =0\; .
\]

Now, assume that (P) has at least a solution (which is indeed the case, because Peano's Existence Theorem applies).
Upon setting:
\[
\phi (x) := \Phi (x,y(x))\; ,
\]
from (I) we infer:
\[
\phi^\prime (x) =0
\]
and finally:
\[
\tag{II}
\phi (x) = \phi (x_0)
\]
everywhere in the interval where the maximal solution of (P) is defined. But (II) is in fact equivalent to (2), so we have the claim. 8-)
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 16047 di 44992
Iscritto il: 12/10/2007, 23:58
Località: Napoli


Torna a The English Corner

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite