A family of improper integrals

Messaggioda gugo82 » 25/09/2020, 16:49

Problem:

1. Compute:
\[
\begin{split}
I(0) &:= \intop_0^\infty \frac{1}{1+x^2}\ \text{d} x \\
I(1) &:= \intop_0^\infty \frac{1}{(1+x^2)(1+x)}\ \text{d} x \\
I(2) &:= \intop_0^\infty \frac{1}{(1+x^2)^2}\ \text{d} x \; ,
\end{split}
\]
showing that these integrals share the same numerical value.

2. Prove that each integral:
\[
I(p) := \intop_0^\infty \frac{1}{(1+x^2)(1+x^p)}\ \text{d} x
\]
with $p in RR$ evaluates as the three integrals above.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 24705 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: A family of improper integrals

Messaggioda Mephlip » 27/09/2020, 17:48

Testo nascosto, fai click qui per vederlo
For (1): I believe that there is a typo in the right hand side of $I(0)$, specifically a factor $\frac{1}{2}$ is missing since from the definition of $I(p)$ it follows that
$$I(0)=\int_0^{\infty} \frac{1}{2(1+x^2)} \text{d}x$$
We have that
$$I(0)=\int_0^{\infty} \frac{1}{2(1+x^2)} \text{d}x=\frac{1}{2} \cdot \frac{\pi}{2}=\frac{\pi}{4}$$
For the evaluation of $I(1)$ and $I(2)$ we will use a technique that can be useful in these kind of integrals; this technique will also give the idea for the general case. The idea is to notice that the interval of integration is invariant under the map $x\mapsto \frac{1}{x}$, hence
$$I(1)=\int_0^{\infty} \frac{1}{(1+x^2)(1+x)}\text{d}x=\int_0^{\infty} \frac{1}{x^2\left(1+\frac{1}{x^2}\right)\left(1+\frac{1}{x}\right)} \text{d}x=\int_0^{\infty} \frac{x}{(1+x^2)(1+x)}\text{d}x=$$
$$=\int_0^{\infty} \frac{1}{1+x^2} \text{d}x-I(1) \Rightarrow 2I(1)=\int_0^{\infty} \frac{1}{1+x^2} \text{d}x=\frac{\pi}{2}\Rightarrow I(1)=\frac{\pi}{4}$$
And
$$I(2)=\int_0^{\infty} \frac{1}{(1+x^2)^2}\text{d}x=\int_0^{\infty} \frac{1}{x^2\left(1+\frac{1}{x^2}\right)^2} \text{d}x=\int_0^{\infty} \frac{x^2}{(1+x^2)^2}\text{d}x=$$
$$=\int_0^{\infty} \frac{1}{1+x^2} \text{d}x -I(2) \Rightarrow 2I(2)=\int_0^{\infty} \frac{1}{1+x^2} \text{d}x=\frac{\pi}{2} \Rightarrow I(2)=\frac{\pi}{4}$$
For (2): By letting $x \mapsto \frac{1}{x}$, it follows that
$$I(p)=\int_0^{\infty} \frac{1}{(1+x^2)(1+x^p)} \text{d}x=\int_0^{\infty} \frac{x^p}{(1+x^2)(1+x^p)} \text{d}x =\int_0^{\infty} \frac{1}{1+x^2}\text{d}x-I(p) \Rightarrow$$
$$\Rightarrow 2I(p)= \int_0^{\infty} \frac{1}{1+x^2} \text{d}x=\frac{\pi}{2} \Rightarrow I(p)=\frac{\pi}{4}$$
For all $p\in\mathbb{R}$.
A spoon can be used for more than just drinking soup. You can use it to dig through the prison you're locked in, or as a weapon to gouge the witch's eyes out. Of course, you can also use the spoon to continually sip the watery soup inside your eternal prison.
Avatar utente
Mephlip
Moderatore globale
Moderatore globale
 
Messaggio: 927 di 3662
Iscritto il: 03/06/2018, 23:53

Re: A family of improper integrals

Messaggioda gugo82 » 30/09/2020, 00:23

Ok!

Here's another way:
Testo nascosto, fai click qui per vederlo
By definition, $I(p)$ is a smooth function of $p$, hence differentiation under integral sign (w.r.t. $p$) works and gives:
\[
\begin{split}
I^\prime (p) &= - \intop_0^\infty \frac{x^p \log x}{(1+x^2)(1+x^p)^2}\ \text{d} x \\
&= - \intop_0^1 \frac{x^p \log x}{(1+x^2)(1+x^p)^2}\ \text{d} x - \intop_1^\infty \frac{x^p \log x}{(1+x^2)(1+x^p)^2}\ \text{d} x \\
&= - \intop_0^1 \frac{x^p \log x}{(1+x^2)(1+x^p)^2}\ \text{d} x - \intop_1^0 \frac{y^{-p} \log y^{-1}}{(1+y^{-2})(1+y^{-p})^2}\ \left(-\frac{1}{y^2}\right)\ \text{d} y \\
&= - \intop_0^1 \frac{x^p \log x}{(1+x^2)(1+x^p)^2}\ \text{d} x + \intop_0^1 \frac{y^p \log y}{(y^2+1)(y^p+1)^2}\ \text{d} y \\
&=0\;.
\end{split}
\]
Therefore $I(p)$ is a constant and equals $I(0) = pi/4$.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 24713 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: A family of improper integrals

Messaggioda Mephlip » 30/09/2020, 16:19

I didn't think about about that, nice approach! I'm missing something or shouldn't it be
Testo nascosto, fai click qui per vederlo
$$I(0)=\int_0^{\infty} \frac{1}{(1+x^2)(1+x^0)} \text{d}x=\int_0^{\infty} \frac{1}{(1+x^2)\cdot2} \text{d}x=\frac{\pi}{4}$$
Instead of $\frac{\pi}{2}$?
A spoon can be used for more than just drinking soup. You can use it to dig through the prison you're locked in, or as a weapon to gouge the witch's eyes out. Of course, you can also use the spoon to continually sip the watery soup inside your eternal prison.
Avatar utente
Mephlip
Moderatore globale
Moderatore globale
 
Messaggio: 928 di 3662
Iscritto il: 03/06/2018, 23:53

Re: A family of improper integrals

Messaggioda gugo82 » 30/09/2020, 16:27

@ Mephlip: Yep! It's a typo.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 24715 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli


Torna a The English Corner

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite