Permutation groups: bases and moved points

Messaggioda Martino » 19/09/2010, 13:08

Let \( \displaystyle G \) be a finite group which acts (on the right) faithfully and transitively on a set \( \displaystyle \Omega \) .

Call "base" of this action a subset \( \displaystyle \Gamma \) of \( \displaystyle \Omega \) such that if an element \( \displaystyle g \in G \) fixes every element of \( \displaystyle \Gamma \) it is the identity - in other words \( \displaystyle \{g \in G\ |\ \alpha g=\alpha\ \forall \alpha \in \Gamma\}=\{1\} \) -, and whose cardinality is the minimum among the cardinalities of the subsets of \( \displaystyle \Omega \) with this property. Let \( \displaystyle b(G) \) denote this minimum cardinality.

Given \( \displaystyle g \in G \) let \( \displaystyle \text{supp}(g) \) be the set of the elements of \( \displaystyle \Omega \) moved by \( \displaystyle g \) , in other words \( \displaystyle \text{supp}(g):=\{\alpha \in \Omega\ |\ \alpha g \neq \alpha\} \) . Let \( \displaystyle \mu(G) \) be the minimum of the \( \displaystyle |\text{supp}(g)| \) when \( \displaystyle g \) varies in \( \displaystyle G-\{1\} \) .

1. Compute \( \displaystyle b(G) \) and \( \displaystyle \mu(G) \) when \( \displaystyle G = C_n = \langle (1 ... n) \rangle \) (the cyclic group of order \( \displaystyle n \) ), \( \displaystyle G=S_n \) (the symmetric group on \( \displaystyle n \) objects, that is the group of bijective maps \( \displaystyle \{1,...,n\} \to \{1,...,n\} \) ), \( \displaystyle G=A_n \) (the alternating group on \( \displaystyle n \) objects) acting in the usual way on \( \displaystyle \{1,...,n\} \) and \( \displaystyle G=\text{GL}(m,q) \) (the group of the \( \displaystyle \mathbb{F}_q \) -linear automorphisms of \( \displaystyle {\mathbb{F}_q}^m \) ) acting in the usual way on \( \displaystyle {\mathbb{F}_q}^m-\{0\} \) .

2. Prove that \( \displaystyle \mu(G) \cdot b(G) \geq |\Omega| \) .

Point 1 is easy, it is useful just to get used to the definitions. You will appreciate the fact that the name "base" in this context is compatible with the concept of base in linear algebra: the bases of \( \displaystyle GL(V) \) (the group of the linear automorphisms of \( \displaystyle V \) ) acting on \( \displaystyle V-\{0\} \) are exactly the bases of \( \displaystyle V \) in the sense of linear algebra, so that \( \displaystyle b(GL(V))=\dim(V) \) .

Point 2 is very tricky!
Le persone che le persone che le persone amano amano amano.
Avatar utente
Martino
Moderatore globale
Moderatore globale
 
Messaggio: 3496 di 13151
Iscritto il: 21/07/2007, 10:48
Località: Brasilia

Messaggioda Camillo » 19/09/2010, 13:36

Welcome Martino in EC :D
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 5221 di 10714
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Re: Permutation groups: bases and moved points

Messaggioda Martino » 28/11/2011, 12:05

Up :-D
Le persone che le persone che le persone amano amano amano.
Avatar utente
Martino
Moderatore globale
Moderatore globale
 
Messaggio: 4796 di 13151
Iscritto il: 21/07/2007, 10:48
Località: Brasilia


Torna a The English Corner

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite