Esercizio su campi

Messaggioda bartoso » 08/02/2019, 13:10

Buongiorno a tutti,
Sono nuovo del forum, e sono da un po' bloccato su un esercizio che non riesco a risolvere. L'esercizio chiede di trovare il polinomio minimo di $root(3)(2)$ su $ \mathbb{Q}(omega ) $ con $ omega = -1/2+sqrt3/2i $ (e di conseguenza $ omega^3=1 $ ).
bartoso
Starting Member
Starting Member
 
Messaggio: 1 di 1
Iscritto il: 06/02/2019, 21:19

Re: Esercizio su campi

Messaggioda fmnq » 09/02/2019, 00:00

Se $\zeta_p$ è una radice primitiva $p$-esima dell'unità e $p$ è primo, il campo di spezzamento di $X^p-2$ è \(\mathbb Q(\zeta_p,\sqrt[p]{2})\), e si può dimostrare che tale estensione ha grado $p(p-1)$ su $\mathbb Q$. Questo implica che $X^p-2$ è irriducibile su $\mathbb Q(\zeta_p)$ (e lo è su $\mathbb Q$, ovviamente).

Ho davvero usato delle proprietà di $2$? Forse una cosa simile è vera ogni volta che un numero razionale $u$ non è una potenza $p$-esima, dando che su ogni campo ciclotomico $X^p-u$ è irriducibile?
fmnq
Junior Member
Junior Member
 
Messaggio: 197 di 382
Iscritto il: 04/10/2017, 00:14


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 12 ospiti