Area pentagono inscritto in triangolo

Messaggioda Igno » 01/02/2019, 18:26

Immagine

Salve non riesco a risolvere il problema in immagine.
Come faccio a sapere la misura della base del pentagono?
Grazie.
Igno
Starting Member
Starting Member
 
Messaggio: 3 di 11
Iscritto il: 19/11/2018, 00:04

Re: Area pentagono inscritto in triangolo

Messaggioda axpgn » 01/02/2019, 19:10

La vetrata intera è un triangolo rettangolo isoscele, quindi puoi calcolare la base dato che è l'ipotenusa.
axpgn
Cannot live without
Cannot live without
 
Messaggio: 12874 di 13833
Iscritto il: 20/11/2013, 23:03

Re: Area pentagono inscritto in triangolo

Messaggioda SirDanielFortesque » 01/02/2019, 19:13

È un "mezzo quadrato", quindi quella base è la diagonale del quadrato. Detto $l$ il lato la diagonale del quadrato è $1,414*l$, poi dividi per tre. E hai la base.

Oppure il teorema di Pitagora come ha detto axpgn.
Conoscete la storia del Conte Giacomo Ceconi?
Avatar utente
SirDanielFortesque
Senior Member
Senior Member
 
Messaggio: 587 di 1085
Iscritto il: 27/12/2016, 09:35
Località: Milano.

Re: Area pentagono inscritto in triangolo

Messaggioda gio73 » 01/02/2019, 19:23

Ciao
Il libro è Zanichelli?
gio73
Moderatore
Moderatore
 
Messaggio: 5303 di 5366
Iscritto il: 27/11/2011, 15:41

Re: Area pentagono inscritto in triangolo

Messaggioda Igno » 01/02/2019, 19:28

Non ho soluzione, non capisco come si possa definire la posizione dei lati verticali sulla base del triangolo. Cosa impedisce che questi si trovino vicino agli estremi, gli angoli del triangolo, o al centro generando nel primo caso un pentagono basso e largo oppure stretto e alto.
Igno
Starting Member
Starting Member
 
Messaggio: 4 di 11
Iscritto il: 19/11/2018, 00:04

Re: Area pentagono inscritto in triangolo

Messaggioda Igno » 01/02/2019, 19:34

Io devo calcolare l'area del pentagono quindi devo conoscere la base il lato del quadrilatero inscritto nel pentagono e l'altezza del triangolino alla sommità.
L
L'ipotenusa ovvio la trovo con pitagora e ora ho capito che il mezzo quadrato è il triangolo isoscele.
Igno
Starting Member
Starting Member
 
Messaggio: 5 di 11
Iscritto il: 19/11/2018, 00:04

Re: Area pentagono inscritto in triangolo

Messaggioda axpgn » 01/02/2019, 19:43

Guarda che quei "quadratini" compresi tra due lati significano che l'angolo in questione è retto; il triangolo rettangolo grande, dato che ha i cateti uguali, ha gli angoli acuti di $45°$ e di conseguenza i triangoli rettangoli piccoli sono simili a questo; inoltre la base della vetrata è divisa in tre parti uguali, lo si capisce dai tre "segni" uguali (i tre trattini verticali).
Più di così …
axpgn
Cannot live without
Cannot live without
 
Messaggio: 12875 di 13833
Iscritto il: 20/11/2013, 23:03

Re: Area pentagono inscritto in triangolo

Messaggioda Igno » 01/02/2019, 20:01

Grazie!!!! Giusto gli angoli sono di 45° quindi la posizione dei lati è obbligata. I triangolini sono isosceli anche loro quindi il cateto di ognuno di loro sono uguali e uguali per esclusione anche alla base del pentagono poi l'altezza del pentagono è il cateto del mezzo triangolo isoscele quindi metà dell'ipotenusa del triangolo grande.
Grazie a tutti.
Igno
Starting Member
Starting Member
 
Messaggio: 6 di 11
Iscritto il: 19/11/2018, 00:04

Re: Area pentagono inscritto in triangolo

Messaggioda SirDanielFortesque » 01/02/2019, 20:20

Puoi anche fare per differenza.

$A_("vetrata centrale")=A_("tutta la vetrata")-2*A_("vetri laterali triangolari")=((7*7)/2)-2*(((7*sqrt(2))/3)*((7*sqrt(2))/3))/2=$

$=49/2-(49*2)/9=(9*49-49*2*2)/(18)=(49*(9-4))/18=49*5/18=245/18=\overset("Circa"){=}13,6 mq$


Penso sia quel libro, quello con degli strani ominidi disegnati sopra,... il "matematica in azione". Io avevo quello.
Conoscete la storia del Conte Giacomo Ceconi?
Avatar utente
SirDanielFortesque
Senior Member
Senior Member
 
Messaggio: 588 di 1085
Iscritto il: 27/12/2016, 09:35
Località: Milano.

Re: Area pentagono inscritto in triangolo

Messaggioda Igno » 02/02/2019, 00:21

No ho sbagliato. Ancora: i lati del pentagono si possono spostare a piacere, l'incidenza con i lati del triangolone non cambia, sempre 45°, i segnetti ci sono ok, ma non credo si possa dedurre da questi la soluzione ne il procedimento ne dicendo che sono simili.....o sono uguali per un dato preciso o non è detto che lo siano...
Almeno così mi pare.
Igno
Starting Member
Starting Member
 
Messaggio: 7 di 11
Iscritto il: 19/11/2018, 00:04

Prossimo

Torna a Secondaria I grado

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite