Dimostrazione riduzione di un’equazione scalare di ordine n ad un sistema di n equazioni del I ordine per n=3

Messaggioda malueli » 12/01/2019, 23:50

Buonasera, vorrei dimostrare il seguente lemma per il caso \(\displaystyle n=3 \). Qualcuno può aiutarmi?

\(\displaystyle y^n(t)=f(t,y,y',y'',...,y^{n-1}) \) equazione differenziale di ordine n in forma normale nella funzione scalare incognita \(\displaystyle y(t) \) può sempre essere scritta nella forma di un sistema, ponendo \(\displaystyle y_1=y, y_2=y' ... y_n=y^{n-1}\), allora
\begin{cases}
y'_1 = y_2 \\
y'_2 = y_3 \\
. \\
. \\
. \\
y'_n = f_n(t,y_1,y_2,...,y_n)
\end{cases}
Ultima modifica di malueli il 13/01/2019, 00:55, modificato 1 volta in totale.
malueli
Starting Member
Starting Member
 
Messaggio: 23 di 25
Iscritto il: 01/02/2018, 13:56

Re: dimostrazione riduzione di un’equazione scalare di ordine n ad un sistema di n equazioni del I ordine per n=3

Messaggioda gugo82 » 13/01/2019, 00:19

Cos'è $n$?

Inoltre, ciò che c'è scritto nel post ha davvero poco a che vedere col titolo del thread.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20426 di 22166
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Dimostrazione riduzione di un’equazione scalare di ordine n ad un sistema di n equazioni del I ordine per n=3

Messaggioda malueli » 13/01/2019, 00:57

Mi scuso moltissimo, l'ora inizia a essere tarda, e ho confuso due teoremi. Ho modificato. Grazie davvero. \(\displaystyle n \) è l'ordine dell'equazione differenziale
malueli
Starting Member
Starting Member
 
Messaggio: 24 di 25
Iscritto il: 01/02/2018, 13:56

Re: Dimostrazione riduzione di un’equazione scalare di ordine n ad un sistema di n equazioni del I ordine per n=3

Messaggioda gugo82 » 13/01/2019, 13:06

Ok.
Comunque c'è poco da dimostrare: basta scrivere il sistema come suggerito dalla formula.

Se non riesci con $n=3$, prova prima con $n=2$.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20427 di 22166
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Dimostrazione riduzione di un’equazione scalare di ordine n ad un sistema di n equazioni del I ordine per n=3

Messaggioda malueli » 13/01/2019, 21:13

Ok, grazie per lo spunto, ci sono arrivato. Serve che posti il procedimento?
malueli
Starting Member
Starting Member
 
Messaggio: 25 di 25
Iscritto il: 01/02/2018, 13:56


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: jarrod e 37 ospiti