Integrale triplo

Messaggioda bastian.0 » 13/09/2019, 19:31

Ciao, potete dirmi solo il risultato che porta a voi questo esercizio per vedere se ho risolto correttamente $ E ={(x,y,z)inR^3t.c.0<=2x<=y,2z>=1,x^2+y^2+(z-1/2)^2<=1} $
$ int int int_(E)^() xy dx dy dz $
Grazie
bastian.0
Junior Member
Junior Member
 
Messaggio: 76 di 103
Iscritto il: 16/08/2019, 12:12

Re: Integrale triplo

Messaggioda bastian.0 » 13/09/2019, 20:53

Un'altra cosa.
Integrando per strati vi trovate un angolo $theta$ strano, compreso tra (0,20pi e pi/2) ? Perché mi ritrovo un'arctan2
bastian.0
Junior Member
Junior Member
 
Messaggio: 77 di 103
Iscritto il: 16/08/2019, 12:12

Re: Integrale triplo

Messaggioda Bokonon » 13/09/2019, 21:12

bastian, è ora di essere più sicuro di te.
Prova a confermare i tuoi calcoli da solo, magari usando una variante (che forse non hai mai osato usare :) ).
Poni $z-1/2=w$ e riscrivi il tutto in funzione di x, y e w.
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1537 di 1691
Iscritto il: 25/05/2018, 21:22

Re: Integrale triplo

Messaggioda bastian.0 » 13/09/2019, 21:41

Eh ma devo essere sicuro di aver fatto I calcoli bene perché non ho "prove del 9" per capire se ho fatto bene non avendo un risultato su questo esercizio, anche errori di calcolo.
Io ho integrato per fili con $rho$ tra 0e1 $theta$ tra $0,35pi$ e $pi/2$ e z tra 0 e $sqrt(1-rho^2)$
solo che $theta$ a causa dell'altra condizione è strano perché a un certo punto mi ritrovo un'arctan2 e viene $0,35pi$ mi sembra strano.
Quanto ti porta?
bastian.0
Junior Member
Junior Member
 
Messaggio: 78 di 103
Iscritto il: 16/08/2019, 12:12

Re: Integrale triplo

Messaggioda arnett » 13/09/2019, 22:11

Testo nascosto, perché contrassegnato dall'autore come fuori tema. Fai click in quest'area per vederlo.
bastian.0 ha scritto:Quanto ti porta?


bastian, amichevolmente, è anche ora di smettere di dire "quanto ti porta", non è italiano :-D
"ci scruta poi gira se ne va"
arnett
Senior Member
Senior Member
 
Messaggio: 1118 di 1185
Iscritto il: 18/07/2018, 09:08

Re: Integrale triplo

Messaggioda Mephlip » 14/09/2019, 01:20

Non ti far spaventare dal termine poco frequente (qualunque cosa significhi) $\arctan 2$: come ti ho già consigliato in un altro messaggio conviene sempre che scrivi i passaggi che hai effettuato per esteso, così chi legge i tuoi messaggi ha tutto il materiale per analizzare bene il tuo svolgimento.
Comunque l'integrale può essere affrontato anche passando in coordinate sferiche, effettuando preliminarmente il cambio di variabili che ti ha già suggerito Bokonon.
Mephlip
Average Member
Average Member
 
Messaggio: 522 di 545
Iscritto il: 04/06/2018, 00:53

Re: Integrale triplo

Messaggioda bastian.0 » 14/09/2019, 10:18

Grazie mille ho provato anche la tua parametrizzazione, io avevo usato la parametrizzazione in coordinate polari sul dominio per z=1/2 e poi ho integrato z tra 1/2 e 3/2 quindi per strati .
Ho solo un dubbio però
Mi ritrovo questo $0<=2costheta<=sintheta$
Come agisco qui? Io considero il primo quadrante però quando interseco per vedere l'intervallo che soddisfa theta di solito grafico normalmente $sintheta$ e inserisco il doppio sull'asse delle ordinate dell'andamento di cosx.
Però l'esatto punto di intersezione come lo vedo? $?<=Theta<=pi/2$
Faccio la tangente?
$arctan2<=theta$ con $costheta>=0$ ?
Grazie
Ps. Ditemi qual è il vostro risultato! :D
bastian.0
Junior Member
Junior Member
 
Messaggio: 79 di 103
Iscritto il: 16/08/2019, 12:12

Re: Integrale triplo

Messaggioda Mephlip » 14/09/2019, 13:01

Dal fatto che $\cos \theta \geq 0$ puoi dividere mantenendo l'ordine, quindi giungi a $\theta \geq \arctan 2$ perché in $0 \leq \theta leq \frac{\pi}{2}$ la tangente è monotòna crescente.
A me viene $\frac{1}{75}$, prova a farlo anche in coordinate sferiche come esercizio.
Non capisco però perché vuoi complicarti la vita :D va bene uguale integrare in $z$, ma sostituire $w=z-\frac{1}{2}$ ti aiuta! In generale, i cambi di variabile fatti bene sono tuoi amici.
Mephlip
Average Member
Average Member
 
Messaggio: 523 di 545
Iscritto il: 04/06/2018, 00:53

Re: Integrale triplo

Messaggioda bastian.0 » 14/09/2019, 13:24

Cavolo non ci avevo pensato io ho provato anche la parametrizzazione sferica però direttamente sulla circonferenza traslata rispetto all'origine con x0,y0,z0 (0,0,1/2) come punto iniziale. Questa ulteriore variante proprio non l'ho presa in considerazione. A me viene 43/3125 cambia l'approssimazione va bene uguale vero? Ce ne possono essere tanti di cambi di variabile mi sa. Ancora grazie
bastian.0
Junior Member
Junior Member
 
Messaggio: 80 di 103
Iscritto il: 16/08/2019, 12:12

Re: Integrale triplo

Messaggioda bastian.0 » 14/09/2019, 14:16

Una cosa ti chiedo. Come hai fatto a ottenere un risultato diciamo pulito? Cioè, la tangente è compresa tra $0,35pi, pi/2$ ,quindi a un certo punto integro sin^2 tra $pi/2 , 0,35pi$ però mi risulta 0,0258. Dopo lo moltiplico per $128/240$ la seconda parte dello svolgimento. Lo so è un dettaglio però vorrei sapere se c'è un modo per trattare questi valori di angolo diciamo non convenzionali. Grazie
bastian.0
Junior Member
Junior Member
 
Messaggio: 81 di 103
Iscritto il: 16/08/2019, 12:12

Prossimo

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Majestic-12 [Bot], spugna e 30 ospiti