Convergenza serie (assoluta e semplice)

Messaggioda daiuba » 26/04/2020, 16:31

Salve,
intanto vi ringrazio per avermi accettato su questo forum molto interessante. Volevo chiedervi alcune delucidazioni riguardo alle due serie:

$sum_(n=1)^oo ((-1/5)^n n^n)/(n!)$ e $sum_(n=1)^oo (-1)^n (5^(n^2))/(n!)^n$.

La soluzione per entrambe è che convergono, ma la mia domanda è, non convergono anche assolutamente? Grazie mille per l'aiuto.
daiuba
Starting Member
Starting Member
 
Messaggio: 1 di 4
Iscritto il: 26/04/2020, 16:24

Re: Convergenza serie (assoluta e semplice)

Messaggioda gugo82 » 26/04/2020, 19:09

Secondo te?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23706 di 24376
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Convergenza serie (assoluta e semplice)

Messaggioda pilloeffe » 26/04/2020, 22:24

Ciao daiuba,

Benvenuto sul forum!
daiuba ha scritto:[...] la mia domanda è, non convergono anche assolutamente?

Dalla domanda che hai posto sembra quasi che tu non abbia ben compreso il significato di convergenza assoluta. Facciamo così, ti riscrivo le due serie proposte e tu rispondi con un post con le due serie assolute corrispondenti:

$ \sum_{n = 1}^{+\infty} ((-1/5)^n n^n)/(n!) = \sum_{n = 1}^{+\infty} (-1)^n ((n/5)^n)/(n!) $

$ \sum_{n = 1}^{+\infty} (-1)^n (5^(n^2))/(n!)^n $
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3750 di 3908
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: Convergenza serie (assoluta e semplice)

Messaggioda daiuba » 27/04/2020, 00:12

Le convergenza assoluta so calcola con i moduli e quindi in entrambe basta studiare la serie senza il termine (-1)^n. Pongo meglio la domanda, a me risulta che convergono entrambe anche assolutamente, mentre nel risultato di entrambi gli esercizi è indicato solo che converge, quindi, visto che quando converge assolutamente lo specifica, penso di aver fatto qualche errore nello studio delle serie dei moduli. Scusate per la domanda che può sembrare stupida. Vi ringrazio comunque per l’aiuto.
daiuba
Starting Member
Starting Member
 
Messaggio: 2 di 4
Iscritto il: 26/04/2020, 16:24

Re: Convergenza serie (assoluta e semplice)

Messaggioda gugo82 » 27/04/2020, 09:57

Se vuoi davvero che qualcuno ti risponda, dovresti postare un po' di calcoli (che è quello che suggerivo sopra). :wink:
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23714 di 24376
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Convergenza serie (assoluta e semplice)

Messaggioda pilloeffe » 27/04/2020, 10:00

daiuba ha scritto:a me risulta che convergono entrambe anche assolutamente, mentre nel risultato di entrambi gli esercizi è indicato solo che converge

Beh, se convergono assolutamente per un ben noto teorema convergono anche semplicemente... :wink:
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 3751 di 3908
Iscritto il: 07/02/2017, 15:45
Località: La Maddalena - Modena

Re: Convergenza serie (assoluta e semplice)

Messaggioda daiuba » 27/04/2020, 11:29

Allora nella prima ho fatto questi passaggi applicando il criterio del rapporto
$ (((n+1)^(n+1))/(5^(n+1)*(n+1)!))*((5^(n)*n!)/(n^n)) $
semplificando ottengo
$ (n+1)^(n)/(5*n^n) $
che può essere riscritto come
$ 1/5*(1+1/n)^n $
e ottengo quindi che il limite è
$ e/5 < 1 $

Quindi la serie converge assolutamente, ma la risposta dell'esame è che converge e basta.

per la seconda applico il criterio della radice ottendo il limite di
$ 5^n/(n! $
che per l'ordine degli infiniti tende a 0 quindi anche questa essendo il limite < 1 dovrebbe convergere assolutamente, ma anche la risposta dell'esame è che converge e basta.

Spero che ora possiate aiutarmi e scusate per il disturbo
daiuba
Starting Member
Starting Member
 
Messaggio: 3 di 4
Iscritto il: 26/04/2020, 16:24

Re: Convergenza serie (assoluta e semplice)

Messaggioda gugo82 » 27/04/2020, 12:13

I conti sono fatti in maniera precisa e corretta, quindi tali sono le tue conclusioni.
Complimenti. :smt023

A futura memoria, ricorda che per fare valutazioni "rapide" puoi usare il Criterio dell'Ordine di Infinitesimo e la formula di Stirling per il fattoriale, i.e. $n! ~~ sqrt(2pi)* n^(n + 1/2) * e^(-n)$. :wink:
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23715 di 24376
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Convergenza serie (assoluta e semplice)

Messaggioda daiuba » 27/04/2020, 12:42

Grazie mille. Scusate il disturbo. Ho deciso di iscrivermi di nuovo ad ingegneria per finire un percorso lasciato tanto tempo fa (quasi 15 anni). Avevo fatto Analisi I e II con 30/30 ma ora devo integrare Analisi I e dopo così tanto tempo passato lontano da queste materie mi viene qualche dubbio. Ancora grazie per l’aiuto e buona giornata a tutti
daiuba
Starting Member
Starting Member
 
Messaggio: 4 di 4
Iscritto il: 26/04/2020, 16:24


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 32 ospiti