cambio di variabile integrali impropri

Messaggioda Pippo99911 » 26/05/2020, 09:25

Salve, se dovessi fare il seguente tipo di sostituzione: x'=-x, come diventerebbe il seguente integrale?
$ int_(-oo )^(+oo )x dx $

La mia idea è che gli estremi si invertono, ovvero -oo diventa +oo, e +oo diventa -oo, pero poi ci sarebbe d(-x') , che farebbe invertire gli estremi, e di fatto riportare alla situazione iniziale. Quindi secondo me cambierebbe solo che appare all'interno dell'integrale -x.
Dite la vostra.
valar morghulis
Avatar utente
Pippo99911
Starting Member
Starting Member
 
Messaggio: 1 di 11
Iscritto il: 18/05/2020, 17:28

Re: cambio di variabile integrali impropri

Messaggioda gugo82 » 26/05/2020, 17:36

Beh, basta fare i conti:

$$\int_{-\infty}^{+\infty} x\ \text{d} x \stackrel{x^\prime = -x}{=} \int_{+\infty}^{-\infty} -x^\prime\ (-1)\ \text{d} x^\prime = -\int_{-\infty}^{+\infty} x^\prime\ \text{d} x^\prime \; .$$

Tuttavia, questo è solo un giochetto puramente formale, giacché l'integrale improprio $\int_{-\infty}^{+\infty} x\ \text{d} x$ non esiste.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23937 di 24337
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: cambio di variabile integrali impropri

Messaggioda Pippo99911 » 26/05/2020, 18:25

gugo82 ha scritto:Beh, basta fare i conti:

\[ \int_{-\infty}^{+\infty} x\ \text{d} x \stackrel{x^\prime = -x}{=} \int_{+\infty}^{-\infty} -x^\prime\ (-1)\ \text{d} x^\prime = -\int_{-\infty}^{+\infty} x^\prime\ \text{d} x^\prime \; . \]

Tuttavia, questo è solo un giochetto puramente formale, giacché l'integrale improprio $ \int_{-\infty}^{+\infty} x\ \text{d} x $ non esiste.


Ok grazie :smt023 , hai confermato quello che pensavo.
valar morghulis
Avatar utente
Pippo99911
Starting Member
Starting Member
 
Messaggio: 2 di 11
Iscritto il: 18/05/2020, 17:28

Re: cambio di variabile integrali impropri

Messaggioda gugo82 » 26/05/2020, 19:37

Prego.

Ma mi preme veramente che tu abbia ben chiaro che:
gugo82 ha scritto:l'integrale improprio $ \int_{-\infty}^{+\infty} x\ \text{d} x $ non esiste.

in quanto è la cosa più importante scritta nel mio post precedente. :wink:
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23939 di 24337
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: cambio di variabile integrali impropri

Messaggioda Pippo99911 » 27/05/2020, 10:33

Si mi è chiaro, ringrazio comunque per la precisione, e può essere utile per chi leggerà il post successivamente.
L'integrale lo avevo posto così solo per mettere in evidenza facilmente i passaggi.
valar morghulis
Avatar utente
Pippo99911
Starting Member
Starting Member
 
Messaggio: 4 di 11
Iscritto il: 18/05/2020, 17:28


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: BayMax, ZfreS e 42 ospiti