Guida alla risoluzione dei sistemi lineari

Messaggioda prime_number » 12/07/2011, 11:49

Ho notato che molti utenti pongono domande sulla risoluzione dei sistemi lineari e ho pensato che un topic generale di “orientamento” nell'argomento potesse essere utile. A mio giudizio questa è una delle questioni più meccaniche in assoluto e un piccolo riassunto potrebbe tornare utile a molti.

Faccio notare che Rouchè Capelli è fondamentale nonchè comodissimo per trattare la discussione di sistemi con parametro!

Supponiamo di avere un sistema lineare a \( \displaystyle m \) equazioni ed \( \displaystyle n \) incognite, denotato da
\( \displaystyle A\cdot\mathbf{x}=\mathbf{b} \to
\left(
\begin{array}{ccc}
a_{11}&\cdots&a_{1n}\\
\vdots&\vdots&\vdots\\
a_{m1}&\cdots&a_{mn}
\end{array}\right) \cdot
\left(\begin{array}{c}
x_1\\
\vdots\\
x_n
\end{array}\right)=\left(\begin{array}{c}
b_1\\
\vdots\\
b_m
\end{array}\right) \)

Il teorema di Rouchè Capelli fornisce una via risolutiva molto schematica, basata sul calcolo del rango (vedi appendice A) di matrice completa e incompleta.

La matrice incompleta del sistema è semplicemente la matrice \( \displaystyle A \) , mentre la matrice completa, denotata \( \displaystyle A|b \) , si ottiene aggiungendo ad \( \displaystyle A \) come ulteriore colonna il vettore dei termini noti \( \displaystyle \mathbf{b} \) , così:
\( \displaystyle \left( \begin{array}{ccc|c}
a_{11}&\cdots&a_{1n}&b_1\\
\vdots&\vdots&\vdots&\vdots\\
a_{m1}&\cdots&a_{mn}&b_m
\end{array}\right) \)

Riporto ora lo schema risolutivo fornito dal teorema; chi risolve un esercizio del genere deve capire in quale caso il sistema rientra e trarre le conclusioni.

Caso 1: \( \displaystyle rank(A)\neq rank(A|b) \)
Il sistema è impossibile, cioè non ha alcuna soluzione.

Caso 2: \( \displaystyle rank(A)=rank(A|b)= n \) (ricordo che \( \displaystyle n \) è il numero delle incognite)
Il sistema è determinato, cioè ha un'unica soluzione. Per trovarla si possono applicare vari metodi, riassunti nell'appendice B.

Caso 3: \( \displaystyle rank(A)=rank(A|b)< n \)
Il sistema è indeterminato, ovvero ha infinite soluzioni. Il numero di parametri liberi, cioè liberi di variare per fornire appunto le infinite soluzioni, è \( \displaystyle k: =n-rank(A) \) ; si dice anche che il sistema ha \( \displaystyle \infty^k \) soluzioni. Per esplicitare la soluzione generica, si scelgono – possibilmente in un modo che convenga ai fini del calcolo – \( \displaystyle k \) incognite e si ricavano tutte le altre in funzione di esse; può risultare utile utilizzare la riduzione a gradini (inclusa nell'appendice B). Gli esempi in fondo comunque chiariscono meglio cosa si deve fare.

APPENDICE A: calcolo del rango
Supponiamo di avere una matrice qualunque \( \displaystyle A \) con \( \displaystyle m \) righe ed \( \displaystyle n \) colonne e di volerne calcolare il rango. Se la matrice risulta essere quadrata ( \( \displaystyle m=n \) ), conviene come prima cosa calcolarne il determinante. Se è non nullo abbiamo già trovato il rango ( \( \displaystyle n \) ), altrimenti possiamo solo dire che $rank(A) < n $ e provare un'altra via.
Il metodo generale più comune è il metodo degli orlati. Si parte cercando un minore non nullo di ordine \( \displaystyle 2 \) . Trovatolo, si cerca di “orlarlo” per avere un minore non nullo di ordine \( \displaystyle 3 \) ... E così via fino a che non si arriva ad avere un minore non nullo di ordine \( \displaystyle k \) e non si riesce più a continuare. Allora si conclude che il rango della matrice è \( \displaystyle k \) .
Il vantaggio di questo metodo è che ogni volta che orliamo abbiamo il minore precedentemente trovato a cui “ancorarci” e non dobbiamo quindi provare tutte le combinazioni possibili, ma molte meno!
Vediamo meglio con un esempio:
Testo nascosto, fai click qui per vederlo
\( \displaystyle A=\left(\begin{array}{ccccc}
1&-1&-1&0&1\\
3&0&1&1&4\\
-2&0&1&1&-1\\
0&-1&-3&-2&-2
\end{array}\right) \)
Partiamo cercando un minore non nullo di ordine \( \displaystyle 2 \) , ad esempio
\( \displaystyle M_1=\left|\begin{array}{cc}
1&-1\\
3&0
\end{array}\right| =3\neq 0 \)
Ora dobbiamo orlare questo minore: non possiamo prendere elementi a casaccio, ma devono rispettare l'allineamente delle righe e delle colonne... e naturalmente devono contentere \( \displaystyle M_1 \) , altrimenti abbiamo fatto della fatica inutile.
Ad esempio prendiamo
\( \displaystyle M_2=\left|\begin{array}{ccc}
1&-1&0\\
3&0&1\\
0&-1&-2
\end{array}\right| = -5\neq 0 \)
Ho orlato il minore precedente con elementi dalla colonna \( \displaystyle 4 \) e della riga \( \displaystyle 4 \) , per cercare di approfittare della larga presenza di zeri, che semplificano i calcoli!
Finora dunque sappiamo che la matrice ha rango almeno \( \displaystyle 3 \) . Cerchiamo di orlare ancora il nostro minore:
\( \displaystyle M_3=\left|\begin{array}{cccc}
1&-1&-1&0\\
3&0&1&1\\
-2&0&1&1\\
0&-1&-3&-2
\end{array}\right| = 0 \)
Proviamo ad orlare nell'unico altro modo possibile:
\( \displaystyle M_3'=\left|\begin{array}{cccc}
1&-1&0&1\\
3&0&1&4\\
-2&0&1&-1\\
0&-1&-2&-2
\end{array}\right| = 0 \)
Concludiamo dunque che il rango della matrice è \( \displaystyle 3 \) .


APPENDICE B: metodi risolutivi per sistemi determinati
Faccio notare che nel caso di sistema determinato, abbiamo sempre una matrice incompleta quadrata, in quanto è sempre possibile eliminare righe che sono tutte nulle o combinazioni lineare di altre ed ottenere un sistema equivalente a quello di partenza.
Come sapere quali righe eventualmente eliminare? Quelle nulle di sicuro. Per quanto riguarda le altre righe inutili, durante il calcolo del rango avrete costruito un minore non nullo di ordine \( \displaystyle n \) : tenete le righe che hanno elementi inclusi in questo minore e cancellate tutte le altre.

Riduzione a gradini
Questo metodo è utilizzabile anche nel caso di sistema indeterminato. In questo caso, una volta che avete battezzato le incognite che faranno la parte dei parametri liberi, portate le colonne dei coefficienti ad esse corrispondenti a destra e consideratele come termini noti. Includerò un esempio in fondo al topic, così è più chiaro.
Lo scopo di questo metodo è ottenere una matrice incompleta della forma
\( \displaystyle \left(\begin{array}{ccccc}
\star&\star&\star&\cdots&\star\\
0&\star&\star&\cdots&\star\\
0&0&\star&\cdots&\star\\
\vdots&\vdots&\vdots&\vdots&\vdots\\
0&0&0&\cdots&\star\\
\end{array}\right) \)
Per farlo si può:
    scambiare righe tra loro
    moltiplicare una riga per un numero reale e sommarla ad un altra.
A questo scopo useremo gli elementi della diagonale principale come pivot per procurarci tutti quegli zeri. Nota bene: tutte queste operazioni vanno fatte sulla matrice completa, è un grave errore lavorare sull'incompleta.
Credo che un esempio chiarisca molto di più di una regola generale:
Testo nascosto, fai click qui per vederlo
\( \displaystyle A|b= \left(\begin{array}{cccc|c}
1&0&2&4&1\\
0&3&1&-1&0\\
1&1&1&-1&1\\
1&0&3&0&0
\end{array}\right) \)
Come primo pivot prendiamo sempre l'elemento di posto \( \displaystyle (1,1) \) e cerchiamo di azzerare tutti gli elementi sotto di lui. Nella seconda riga c'è già uno \( \displaystyle 0 \) , ma non nella terza e quarta.
Le operazioni che facciamo tra righe sono:
\( \displaystyle 3R-1R \)
\( \displaystyle 4R-1R \)
ottenendo la nuova matrice
\( \displaystyle \left(\begin{array}{cccc|c}
1&0&2&4&1\\
0&3&1&-1&0\\
0&1&-1&-5&0\\
0&0&1&-4&-1
\end{array}\right) \)
Come secondo pivot, prendiamo sempre l'elemento di posto \( \displaystyle (2,2) \) e cerchiamo nuovamente di azzerare gli elementi sotto di lui. Le operazioni che occorrono sono:
\( \displaystyle 3R- \displaystyle\frac{1}{3}\cdot 2R \)
(perché in questo modo quell' \( \displaystyle 1 \) della riga \( \displaystyle 3 \) viene azzerato dal nostro pivot, che è \( \displaystyle 3 \) )
Otteniamo la nuova matrice:
\( \displaystyle \left(\begin{array}{cccc|c}
1&0&2&4&1\\
0&3&1&-1&0\\
0&0&-4/3&-14/3&0\\
0&0&1&-4&-1
\end{array}\right) \)
Salto gli ultimi passaggi (che sarebbero identici ai precedenti, come pivot viene usato l'elemento di posto \( \displaystyle (3,3) \) ) e scrivo la matrice ridotta a gradini:
\( \displaystyle \left(\begin{array}{cccc|c}
1&0&2&4&1\\
0&3&1&-1&0\\
0&0&-4/3&-14/3&0\\
0&0&0&-15/2&-1
\end{array}\right) \)

Il vantaggio di questo metodo è che con la matrice ridotta a scalini si può facilmente ricavare l'ultima variabile, poi andandola a sostituire nella penultima equazione trovare la penultima... e così via fino alla prima variabile.
Nel nostro esempio:
Testo nascosto, fai click qui per vederlo
Dall'ultima riga del nuovo sistema otteniamo:
\( \displaystyle \displaystyle -\frac{15}{2}x_4= -1\to x_4=\frac{2}{15} \)
Andiamo a sostituire nella penultima equazione e ricaviamo \( \displaystyle x_3 \) :
\( \displaystyle \displaystyle -\frac{4}{3}x_3 -\frac{14}{3}x_4 = 0\to -\frac{4}{3}x_3 -\frac{14}{3}\frac{2}{15} = 0 \to x_3= -\frac{7}{15} \)
… e così via fino ad arrivare ad \( \displaystyle x_1 \)


Cramer
Questa regola è piuttosto immediata, ma rischia di trasformarsi in un inferno di conti... io la terrei buona per matrici di dimensioni non superiori a \( \displaystyle 4 \) oppure per matrici piene di zeri.
La i-esima variabile si ricava con questa semplice operazione:
\( \displaystyle \displaystyle x_i =\frac{det(A_i)}{det(A)} \)
dove la matrice \( \displaystyle A_i \) è quella che si ottiene sostituendo alla colonna i-esima di \( \displaystyle A \) il vettore dei termini noti \( \displaystyle \mathbf{b} \) .
Facciamo un esempio:
Testo nascosto, fai click qui per vederlo
\( \displaystyle \left(\begin{array}{ccc}
1&0&2\\
0&3&1\\
1&1&1
\end{array}\right)\cdot
\left(\begin{array}{c}
x\\
y\\
z
\end{array}\right)=
\left(\begin{array}{c}
0\\
1\\
0
\end{array}\right) \)
Risulta \( \displaystyle det(A)=-4 \) .
Calcoliamo, ad esempio, la coordinata \( \displaystyle y \) :
\( \displaystyle det(A_2)=det\left(\begin{array}{ccc}
1&0&2\\
0&1&1\\
1&0&1
\end{array}\right)=-1 \)
Allora \( \displaystyle \displaystyle y=\frac{det(A_2)}{det(A)}=\frac{1}{4} \) .


ESEMPI (da completare)

Sistemi determinati

Testo nascosto, fai click qui per vederlo
Consideriamo il sistema
\( \displaystyle \begin{cases}
x-y+z=6\\
2x+y-z=-3\\
x-y-z=0
\end{cases} \)
e costruiamo la matrice completa \( \displaystyle A|b \) :
\( \displaystyle \left(\begin{array}{ccc|c}
1&-1&1&6\\
2&1&-1&-3\\
1&-1&-1&0
\end{array}\right) \)
La seconda colonna mi offre lo spunto per fare due operazioni lecite per procurarmi qualche zero, che fa sempre comodo nei calcoli:
\( \displaystyle 1R+2R \)
\( \displaystyle 3R+2R \)
e ottengo
\( \displaystyle \left(\begin{array}{ccc|c}
3&0&0&3\\
2&1&-1&-3\\
3&0&-2&-3
\end{array}\right) \)
Dato che la matrice incompleta è quadrata, provo a calcolare il determinante prima di - eventualmente - usare il metodo degli orlati, sfruttando naturalmente gli zeri che mi sono procurata: \( \displaystyle det(A)=3\cdot (-2)\neq 0 \)
Dunque \( \displaystyle rank(A)=rank(A|b)=3 \) (numero incognite) e quindi il sistema è determinato.
Essendo la matrice piccina e piena di zeri potrei benissimo usare Cramer, ma guardando la prima riga mi rendo conto che già ho in tasca il valore di \( \displaystyle x (x=1) \) e quindi credo mi convenga sostituire nelle altre due equazioni e ricavare le altre variabili.
\( \displaystyle \begin{cases}
2+y-z=-3\\
3-2z=-3
\end{cases} \)
e dunque la soluzione è \( \displaystyle (1,-2,3) \) .

Naturalmente il fatto di aver fatto quelle operazioni sulle righe del sistema e di aver usato quest'ultimo modo invece di Cramer è "un'extra". Si poteva benissimo trovare il rango con gli orlati e poi usare Cramer, ho solo voluto far vedere un modo un po' più furbo e attento. I calcoli meccanici fanno sentire sicuri, ma fanno anche perdere un sacco di tempo e di concentrazione ad un esame.


Sistemi indeterminati
Testo nascosto, fai click qui per vederlo
\( \displaystyle \begin{cases}
7y-2z=4\\
2x-3y-4z=0\\
4x+y-10z=4
\end{cases} \)
La matrice completa è
\( \displaystyle A|b=\left(\begin{array}{ccc|c}
0&7&-2&4\\
2&-3&-4&0\\
4&1&-10&4
\end{array}\right) \)
Dato che la matrice incompleta è quadrata, proviamo a calcolarne il determinante secondo la prima riga:
\( \displaystyle 0\left|\begin{array}{cc}
-3&-4\\
1&-10
\end{array}\right| -7\left|\begin{array}{cc}
2&-4\\
4&-10
\end{array}\right| -2\left|\begin{array}{cc}
2&-3\\
4&1
\end{array}\right|=0 \)
Dunque \( \displaystyle rank(A)=2 \) : infatti possiamo considerare il minore non nullo \( \displaystyle M_1=\left|\begin{array}{cc}
0&7\\
2&-3
\end{array}\right| \)
Proviamo ad orlarlo (nell'unico modo possibile!) per calcolare il rango della matrice completa:
\( \displaystyle M_2=\left|\begin{array}{ccc}
0&7&4\\
2&-3&0\\
4&1&4
\end{array}\right|=0 \)
quindi concludendo: \( \displaystyle rank(A)=rank(A|b)=2 \) che è minore del numero delle incognite. Dunque il sistema ha \( \displaystyle \infty^1 \) soluzioni; scegliamo \( \displaystyle z \) come parametro libero, ottenendo:
\( \displaystyle \begin{cases}
x=3y+4z=\displaystyle\frac{34}{7}z+\frac{12}{7}\\
y=\displaystyle\frac{4}{7}+\frac{2}{7}z
\end{cases} \)
Un altro modo di scrivere la soluzione è \( \displaystyle \{(\frac{34}{7}z+\frac{12}{7},\frac{4}{7}+\frac{2}{7}z,z ), z\in\mathbb{R}\} \)


Sistemi impossibili
Testo nascosto, fai click qui per vederlo
Dato il sistema
\( \displaystyle \begin{cases}
x-y+2z=0\\
x-y-3z=5\\
-2x+2y+z=-5\\
x-y+9z=-9
\end{cases} \)
La matrice completa è
\( \displaystyle A|b=\left(\begin{array}{ccc|c}
1&-1&2&0\\
1&-1&-3&5\\
-2&2&1&-5\\
1&-1&9&-9
\end{array}\right) \)
Partiamo a calcolare il rango di \( \displaystyle A \) con il metodo degli orlati.
\( \displaystyle M_1 = \left|\begin{array}{cc}
-1&2\\
-1&-3
\end{array}\right|=5\neq 0 \)
dunque il rango è almeno \( \displaystyle 2 \) .
Proviamo ad orlare il minore trovato:
\( \displaystyle M_2=\left|\begin{array}{ccc}
1&-1&2\\
1&-1&-3\\
-2&2&1
\end{array}\right|=0 \)
\( \displaystyle M_2'=\left|\begin{array}{ccc}
1&-1&2\\
1&-1&-3\\
1&-1&9
\end{array}\right|=0 \)
quindi concludiamo \( \displaystyle rank(A)=2 \) .
Sempre orlando il minore iniziale, cerchiamo di vedere qual è il rango della matrice completa.
\( \displaystyle M_2''=\left|\begin{array}{ccc}
-1&2&0\\
-1&-3&5\\
-1&9&-9
\end{array}\right|=-10\neq 0 \)
quindi abbiamo \( \displaystyle rank(A|b)\geq 3 \) e quindi grazie a Rouchè Capelli concludiamo che il sistema è impossibile.


Sistemi parametrici
Testo nascosto, fai click qui per vederlo


********************************************************************************
P.S. Se ho fatto errori o dimenticato qualche contenuto, critiche e commenti sono ben accetti! Vorrei che questo topic fosse il più completo e chiaro possibile.

Paola
Ultima modifica di prime_number il 10/01/2013, 11:01, modificato 10 volte in totale.
www.greedy-bear.com : il mio blog di cucina italiana e finlandese.
Avatar utente
prime_number
Cannot live without
Cannot live without
 
Messaggio: 2100 di 3680
Iscritto il: 17/09/2004, 15:20
Località: Helsinki

Messaggioda Camillo » 12/07/2011, 18:35

Bel lavoro Paola, l'ho messo in prima linea.
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 5777 di 8074
Iscritto il: 31/08/2002, 22:06
Località: Milano -Italy

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda vict85 » 17/07/2011, 20:22

Questi commenti sono forse più collegati ad un corso di algebra lineare numerica ma li pongo qui perché trovo che questa parte venga spesso fatta abbastanza male in algebra lineare. Soprattutto quando si passa dall'algoritmo di eliminazione di Gauß alla ben più pratica fattorizzazione LU e altre fattorizzazioni.

Penso che andrebbe fatto un accenno alla fattorizzazione LU e ad altri metodi simili. Se ho tempo magari aggiungo qualcosa qui. Intanto introduco il problema da cui nascono questi metodi. Ma prima aggiungo che il metodo di Cramer ha una complessità computazionale $O(n!)$ se si usa il metodo classico per i calcoli del determinante contro gli $O(n^3)$ del metodo di eliminazione di Gauß. Ignorando le costanti, che sono comunque piuttosto basse, $n!>n^3$ da $6$ in poi ed è quindi per questo che Cramer è generalmente sconsigliato se non si lavora in matrici molto piccole.

Il maggior problema di questo genere di metodi risiede comunque nel fatto che si lavora con matrici che contengono i termini noti e quindi che non risulta possibile riutilizzare i calcoli per risolvere sistemi in cui fai variare i termini noti. La fattorizzazione LU e metodi simili nascono invece con questo scopo. In generale i metodi consistono nell'esprimere la matrice $A$ del sistema come prodotto di matrici, come quelle triangolari, che sono facili da risolvere e/o da invertire (il sistema \( \displaystyle A\mathbf{x} = \mathbf{b} \) è equivalente a \( \displaystyle \mathbf{x} = A^{-1}\mathbf{b} \) *).

In generale abbiamo quindi che $A = A_1A_2\cdots A_n$ e che quindi \( \displaystyle \mathbf{b} = A\mathbf{x} = A_1A_2\cdots A_n\mathbf{x} \) . Il risultato viene quindi calcolato ricorsivamente. Si pone infatti $bb x_1 = A_2\cdots A_n bb x$, $bb x_2 = A_3\cdots A_n bb x$ e così via fino a $bb x_n = bb x$ e quindi si osserva che $A_1 bb x_1 = bb b$, $A_2 bb x_2 = bb x_1$, $A_3 bb x_3 = bb x_2$ e così via fino a $A_n bb x_n = A_n bb x = bb x_{n-1}$. Non sempre questo è comunque possibile e per alcune fattorizzazioni è necessario l'uso del pivoting (come in quella LU).

Finora ho presentato solo l'argomento generale e non risulta certo immediato come questi metodi possano essere collegati ai metodi presentati in precedenza. Cominciamo quindi a vedere il metodo della riduzione a gradini in termini differenti.

Il metodo inizia dal sistema $A bb x = bb b$. A questo quindi, per ora ignorando il pivoting, vengono applicate le trasformazioni descritte in precedenza in modo da eliminare i valori nella prima colonna ad eccezione del primo. Il sistema diventerà quindi nella forma $U_1 bb x = bb b_1$ dove $U_1 = T_1A$ e $bb b_1 = T_1 bb b$.
È abbastanza semplice osservare che $T_1$ è triangolare inferiore.
In modo analogo si passerà quindi al sistema $U_2 bb x = bb b_2$ e così via fino ad avere una matrice $U$ triangolare superiore o, nel caso in cui la matrice non sia quadrata ad una matrice della forma presentata precedentemente.
Ad ogni passaggio si è moltiplicato entrambi i membri dell'equazione matriciale per una matrice $T_i$ triangolare inferiore (prodotto di matrici elementari della forma descritta precedentemente da prime_number). Alla fine quindi si ha che $U = T_n\cdots T_1A$ o equivalentemente $T_1^{-1}\cdots T_{n}^{-1}U = A$. Ponendo il prodotto $T_1^{-1}\cdots T_{n}= L$ si ricava la formula $LU = A$ in cui $L$ è triangolare inferiore e $U$ è triangolare superiore. Si tenga conto comunque che sto ignorando il pivoting per semplicità e che in generale si ha che $LU = PA$ dove $P$ è una permutazione delle righe**.

La fattorizzazione non è unica, infatti se $D$ è una matrice diagonale allora $LD$ e $D^{-1}U$ sono rispettivamente triangolari inferiori e superiori e $LDD^{-1}U = LU = A$. La fattorizzazione è però unica se si impone che $L$ abbia tutti 1 sulla diagonale.

Va comunque notato che fattorizzare la matrice richiede un numero di calcoli paragonabili alla riduzione e che non è necessario tenere a mente tutti i $T_i$ soprattutto considerando che l'inversione e il prodotto di questo tipo di matrici è molto semplice (in generale non viene fatto). Ora che abbiano notato che questa fattorizzazione esiste si può ricavare l'algoritmo in modo più semplice tenendo conto che $A = LU$ e quindi ricavare le componenti di $L$ e di $U$ a partire dal prodotto matriciale, eventualmente aggiungendoci il pivoting.

Se ho tempo ci aggiungo per bene i calcoli. In ogni caso si tenga presente che per quanto i metodi siano equivalenti è comunque possibile riordinare le operazioni in vario modo.

Sullo stesso principio c'è, per esempio, la fattorizzazione QR dove la matrice viene espressa come prodotto di una matrice ortogonale e di una triangolare superiore. La dimostrazione della sua esistenza è basata sull'algoritmo di Gram-Schmidt di ortogonalizzazione di una base in uno spazio vettoriale in cui è definito un prodotto interno (come il normale prodotto scalare euclideo).


*Questo metodo è utilizzato per esempio con le matrici ortogonali in cui l'inversa coincide con la trasposta.
** In algebra lineare numerica si trovano anche fattorizzazioni del tipo $LU = PAQ$ in cui cioè che vengono permutate sia le righe che le colonne. Questo tipo di fattorizzazione ha lo scopo di aumentare la stabilità dell'algoritmo ma non ha vantaggi nel caso in cui a risolvere il sistema sia un umano.
Ultima modifica di vict85 il 01/09/2011, 13:45, modificato 2 volte in totale.
vict85
Moderatore
Moderatore
 
Messaggio: 2318 di 9785
Iscritto il: 16/01/2008, 01:13
Località: Berlin

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda Sergio » 07/09/2011, 13:06

Grande Paola! Un'ottima idea!
Vorrei solo pregarti di aggiungere un paio di note, anche se ispirate forse un po' troppo ai miei gusti personali. Insomma... vedi tu.
Ricordo la sbuffante insofferenza di uno dei miei prof quando qualcuno parlava di matrice (in)completa: "Ma che vuol dire? Completa rispetto a che cosa? Chiamare 'completa' la matrice orlata è come chiamare una figlia Genoveffa!"
Insomma, direi che in un sistema $Ax=b$ esiste una matrice-e-basta (al più matrice dei coefficienti) che è $A$ e che da essa si può costruire una seconda matrice, detta orlata, aggiungendo la colonna $b$; ricorderei poi che nell'uso corrente vengono spesso anche dette, rispettivamente e un po' impropriamente, "incompleta" e "completa".
Soprattutto, sottolinerei che parlare di $oo^k$ soluzioni è, a rigore, alquanto improprio. Infatti le soluzioni, se infinite, sono sempre $oo$, mentre $k$ è la dimensione del sottospazio affine delle soluzioni. La "formuletta" $oo^k$ risulta intuitivamente utile (in pratica, aiuta a trovare correttamente le soluzioni), ma non si deve dimenticare che la cardinalità di un insieme infinito di soluzioni è sempre la stessa, quale che sia $k$, così come la cardinalità dell'insieme "punti del segmento $l$" è uguale a quella dell'insieme "punti del quadrato di lato $l$" (una coserella poco intuitiva, ma importante).
Complimenti ancora e buon lavoro!
Sergio
"Se vuoi un anno di prosperità coltiva del riso. Se vuoi dieci anni di prosperità pianta degli alberi. Se vuoi cento anni di prosperità istruisci degli uomini" (proverbio cinese). E invece... viewtopic.php?p=236293#p236293
Avatar utente
Sergio
Cannot live without
Cannot live without
 
Messaggio: 3459 di 6140
Iscritto il: 26/04/2004, 11:56
Località: Roma

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda theras » 10/10/2011, 17:12

Sergio ha scritto:......Soprattutto, sottolinerei che parlare di $oo^k$ soluzioni è, a rigore, alquanto improprio. Infatti le soluzioni, se infinite, sono sempre $oo$, mentre $k$ è la dimensione del sottospazio affine delle soluzioni. La "formuletta" $oo^k$ risulta intuitivamente utile (in pratica, aiuta a trovare correttamente le soluzioni), ma non si deve dimenticare che la cardinalità di un insieme infinito di soluzioni è sempre la stessa, quale che sia $k$, così come la cardinalità dell'insieme "punti del segmento $l$" è uguale a quella dell'insieme "punti del quadrato di lato $l$" (una coserella poco intuitiva, ma importante).
Complimenti ancora e buon lavoro!
Sergio

Ah..questi matematici vecchio stampo e gentiluomini,
che trovano romantico financo il ricordo d'un prof un pò cavilloso:
ne servirebbero di più,a questo povero mondo!
Comunque attento che,come saprai,la verità fornita dall'ultimo esempio costò al buon George la ragione
(e mi vien da pensare a quel talentaccio di Maradona,che disse nel film sulla sua figura di Kusturica
"Ma se tutto quello che ho fatto su un campo da calcio è avvenuto nella condizioni sbagliate che tutti conoscete,
vi rendete conto che calciatore vi siete persi?"),
per colpa dell'ostracismo d'una comunità che non era ancora matura per accettare (af)finezze come quella
(e se non ricordo male,dato che si parla di ranghi,fù proprio Kronecker il suo nemico più acerrimo!):
ma i frequentatori di questo forum sono ben più dotati d'immaginazione,direi,
e dunque non corri rischi..
Per il resto son d'accordo:
entrambi lavori sono ottimi,sintetici,chiari ed esaustivi.
Complimenti per questa vostra bella creatura,
e più in generale al forum ed a te in particolare:
contraggo debiti sui perchè
(come disse il mio insegnante d'Analisi II quando usò $int_(-oo)^(+oo) e^(-x^2)dx$ senza aver ancora parlato d'integrali multipli..),
ma ancora non è arrivato il tempo di saldarli.
Saluti dal web.
E' meglio non amare troppo la Matematica:
è più Lei a dover amare te.
Renato Caccioppoli(attribuito).
theras
Senior Member
Senior Member
 
Messaggio: 24 di 1609
Iscritto il: 04/10/2011, 17:19

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda vaivavalo » 29/11/2011, 13:55

salve, sono uno studente di Ingegneria e volevo avere delucidazioni sui sistemi:
avendo un sistema lineare con 3 equazioni in 3 incognite , scrivo la matrice associata, calcolo il determinante che è diverso da 0, svolgo normalmente Cramer per determinare i valori (x,y,z), ma avendo un parametro h all'interno delle equazioni, arrivato al calcolo delle (x,y,z) cosa devo fare? Devo vedere al variare di h cosa accade, sostituendo il valore ottenuto dall'equazione associata al determinate al sistema lineare, e poi? Quali sono le soluzioni del sistema? Quelle trovate prima (e quindi il sostituire l'h servirebbe solo a confermare le soluzioni) o i nuovi valori per (x,y,z)? Grazie
vaivavalo
Starting Member
Starting Member
 
Messaggio: 2 di 11
Iscritto il: 20/11/2011, 13:36

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda vict85 » 29/11/2011, 17:42

Questa discussione serve come dispensa/guida e non per rispondere ai problemi personali.

Per quello ti invito a riproporre il problema in una nuova discussione.

P.S: magari usando le formule.
vict85
Moderatore
Moderatore
 
Messaggio: 2882 di 9785
Iscritto il: 16/01/2008, 01:13
Località: Berlin

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda Sessio » 06/12/2011, 18:55

Che bello, adoro essere il primo a notare un errore di distrazione, mi fa sentire sveglio :) Il vettore dei termini noti dovrebbe avere m componenti, non n.
Sessio
Starting Member
Starting Member
 
Messaggio: 5 di 27
Iscritto il: 04/12/2011, 19:21

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda prime_number » 22/02/2012, 09:41

Grazie Sessio, ho corretto!

Paola
www.greedy-bear.com : il mio blog di cucina italiana e finlandese.
Avatar utente
prime_number
Cannot live without
Cannot live without
 
Messaggio: 2795 di 3680
Iscritto il: 17/09/2004, 15:20
Località: Helsinki

Re: Guida alla risoluzione dei sistemi lineari

Messaggioda Perito97 » 06/03/2012, 19:06

Ottima guida, molto utile.
Ho un dubbio però cosa succede se il rango(A)=rango(A|b) > n ?
Perito97
New Member
New Member
 
Messaggio: 64 di 90
Iscritto il: 05/01/2012, 16:43

Prossimo

Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 10 ospiti