Linee di trasmissione e resistenze

Messaggioda Bandit » 11/07/2006, 15:04

se ho un generatore con una resistenza Rg in serie ad una linea di trasmissione con resistenza caratteristica Ro e lunghezza lampda/4, la resistenza risultante guardando dalla fine della linea di trasmissione è Ro^2/Rg .(sicurissimo.)

ora se sto nella stessa situazione ma con Rg=Ro (quindi resistenza adattata alla linea), e con una linea di lunghezza qualsiasi, quale è la resistenza risultate?
ciao
Bandit
Senior Member
Senior Member
 
Messaggio: 814 di 1543
Iscritto il: 01/02/2005, 12:27
Località: Italy

Messaggioda spassky » 11/07/2006, 18:23

Se Ro è reale, il risultato si ottiene mettendo semplicemente Ro=Rg nell'espressione dell'impedenza caratteristica " trasportata" sul tratto a lamBda/4.
Dunque, se la linea è adattata, e il carico Rg è puramente resistivo, il trasformatore a lambda/4 non desta problemi. Quello che vedi a valle della linea trasmissiva è sempre Rg e questo ha fisicamente senso perchè non c'è onda regressiva.
spassky
Junior Member
Junior Member
 
Messaggio: 204 di 440
Iscritto il: 16/04/2004, 13:17

Messaggioda Bandit » 12/07/2006, 11:41

Ok, quindi, nel primo caso, vedo sempre Rg o Ro tanto è la stessa cosa.

ti posso fare un'altra domanda, su questo tema?
Se ho per esempio 3 linee di trasmissione quella centrale di lunghezza lampda/4 e di resistenza caratteristica Zincognita, e le altre 2 linee di trasmissione una a sx ed una a dx (con un carico Zc) con resistenza caratteristica Zo. Come faccio a trovarmi la Zincognita per adattarla alle altre 2?scommetto il trasformatore a lampda/4? ma con quale sono le forumue?
Codice:
----------[______]--------[__________]-----------[________]-----!
             Z0                 Zincognita               Z0           [ ] Zc
                                                                                             !
----------[______]--------[__________]-----------[________]-----
Bandit
Senior Member
Senior Member
 
Messaggio: 815 di 1543
Iscritto il: 01/02/2005, 12:27
Località: Italy

Messaggioda nicola de rosa » 12/07/2006, 13:48

Bisogna ricordare che l'impedenza in ingresso ad un trasformatore a lambda/4 deve essere puramente reale se si vuole adattamento. Cioè in tal caso prima bisogna trasportare Zc col trasporto dell'impedenza. Avremo un nuovo carico Z'c con parte reale ed immaginaria. In tal caso la parte immaginaria deve essere eliminata se si vuole sfruttare il trasformatore a lambda/4. Supponendo di averla eliminata in qualche modo, la Zincognita sarà la media geometrica della parte reale del carico trasportato e dell'impedenza Z0 a sinistra del tratto stesso.
Cioè se Z'c=Re{Z'c}+i*Im{Z'c} allora
Zincognita=sqrt(Re{Z'c}*Z0)
Ma come eliminare Im{Z'c}? Bisogna usare uno stub (cioè un tronco chiuso in corto circuito o circuito aperto) in parallelo o in serie all'ultimo tronco e la cui lunghezza scaturirà dall'imposizione che Im{Z'c}+Im{trasporto dello stub}=0. In tal caso avremo un carico puramente reale visto all'ingresso del trasformatore e si può applicare la regola del trasformatore a lambda/4.
Quindi tra il tratto con impedenza Zincognita e quello alla sua destra deve starci uno stub, il cui trasporto ricordiamo dà un carico puramente immaginario.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 46 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Marvin » 12/07/2006, 13:52

ma questa roba non è mica il problema del Rifasamento?!

Marvin
Avatar utente
Marvin
Average Member
Average Member
 
Messaggio: 362 di 521
Iscritto il: 28/07/2005, 11:30
Località: Milano

Messaggioda nicola de rosa » 12/07/2006, 13:57

è un classico problema di propagazione guidata o campi elettromagnetici in cui si vuole l'adattamento del carico alla linea in modo da massimizzare la potenza su di esso dissipata. Infatti l'adattamento del carico non significa altro che in modo che la potenza reattiva del carico sia nulla, minimizzando così l'attenuazione del segnale trasmesso lungo la linea stessa.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 47 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Bandit » 12/07/2006, 14:13

nicasamarciano ha scritto:Bisogna ricordare che l'impedenza in ingresso ad un trasformatore a lambda/4 deve essere puramente reale se si vuole adattamento. Cioè in tal caso prima bisogna trasportare Zc col trasporto dell'impedenza. Avremo un nuovo carico Z'c con parte reale ed immaginaria. In tal caso la parte immaginaria deve essere eliminata se si vuole sfruttare il trasformatore a lambda/4. Supponendo di averla eliminata in qualche modo, la Zincognita sarà la media geometrica della parte reale del carico trasportato e dell'impedenza Z0 a sinistra del tratto stesso.
Cioè se Z'c=Re{Z'c}+i*Im{Z'c} allora

Zincognita=sqrt(Re{Z'c}*Z0)
Ma come eliminare Im{Z'c}? Bisogna usare uno stub (cioè un tronco chiuso in corto circuito o circuito aperto) in parallelo o in serie all'ultimo tronco e la cui lunghezza scaturirà dall'imposizione che Im{Z'c}+Im{trasporto dello stub}=0. In tal caso avremo un carico puramente reale visto all'ingresso del trasformatore e si può applicare la regola del trasformatore a lambda/4.
Quindi tra il tratto con impedenza Zincognita e quello alla sua destra deve starci uno stub, il cui trasporto ricordiamo dà un carico puramente immaginario.


Non potendo utilizzare lo stub (non lo posso inserire a piacimento), quindi ho pensato guardando il tuo consiglio

Z=Zincognita^2/Z'c= Zo

quindi $Z$incognita$=sqrt(Z'c* Zo)$ giusto?

quindi poi Z'c=$ Z0 * (Zc+jZ0t)/ (Z0+jZct). $La parte reaale che viene fuori da questa cosa la pongo uguale a Z0 e mi calcolo la lunghezza dell'ultimo tratto Z0, in modo poi da potermi trovare un numero bene preciso di Z'c, giusto?
Bandit
Senior Member
Senior Member
 
Messaggio: 817 di 1543
Iscritto il: 01/02/2005, 12:27
Località: Italy

Messaggioda nicola de rosa » 12/07/2006, 14:36

leggi post sotto
Ultima modifica di nicola de rosa il 12/07/2006, 14:57, modificato 1 volta in totale.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 48 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda nicola de rosa » 12/07/2006, 14:54

fai cosi:
trasporta Zc ottenendo Z'c. Imponi che la parte immaginaria di Z'c sia nulla e così trovi la lunghezza dell'ultimo tratto. Poi con quella lunghezza trovi la parte reale. La Zincognita, sfruttando il trasformatore è sqrt(Re{Z'c}*Z0). Così hai adattamento a destrra e sinistra
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 49 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda nicola de rosa » 12/07/2006, 14:55

leggi post sopra
Ultima modifica di nicola de rosa il 12/07/2006, 14:56, modificato 1 volta in totale.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 50 di 2040
Iscritto il: 07/05/2006, 15:33

Prossimo

Torna a Ingegneria

Chi c’è in linea

Visitano il forum: Nessuno e 10 ospiti