Il gatto e il topo

Messaggioda Lore.p98 » 29/05/2019, 10:13

Tom vuole prendere Jerry che si trova in una pozzanghera di forma approssimabile ad una circonferenza. Jerry nella terra è più veloce di Tom e riesce a sfuggirgli, però nuotando nella pozzanghera è 4 volte più lento di Tom . Tom non vuole bagnarsi le zampe e vuole catturare Jerry appena arrivato a terra. In questo modo Tom si muove solo sul bordo della pozzanghera mentre Jerry può muoversi liberamente all’interno di essa. Riuscirà Jerry a scappare? Se sì, qual è l’angolo formato tra il raggio che indica la posizione di Tom e quello che indica la posizione di Jerry?
Qual è la velocità minima che deve avere tom in funzione di quella di jerry per catturarlo?
[Si supponga che Jerry parta dal centro della pozzanghera, e che tutti e due siano adimensionali]
Lore.p98
New Member
New Member
 
Messaggio: 50 di 54
Iscritto il: 23/11/2018, 18:44

Re: Il gatto e il topo

Messaggioda axpgn » 29/05/2019, 11:46

axpgn
Cannot live without
Cannot live without
 
Messaggio: 13555 di 13820
Iscritto il: 20/11/2013, 23:03

Re: Il gatto e il topo

Messaggioda Bokonon » 29/05/2019, 15:23

Anche qua https://www.youtube.com/watch?v=vF_-ob9vseM
...per pure coincidenza pubblicato ieri :)
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1315 di 1448
Iscritto il: 25/05/2018, 21:22

Re: Il gatto e il topo

Messaggioda Lore.p98 » 30/05/2019, 09:11

Bokonon ha scritto:Anche qua https://www.youtube.com/watch?v=vF_-ob9vseM
...per pure coincidenza pubblicato ieri :)

Non è una coincidenza, prima di pubblicare il problema ho visto il video di numberphile :D mi sembrava interessante e volevo condividerlo qua. A quanto pare però esisteva già un problema identico con "personaggi" diversi.
Lore.p98
New Member
New Member
 
Messaggio: 51 di 54
Iscritto il: 23/11/2018, 18:44

Re: Il gatto e il topo

Messaggioda universo » 02/06/2019, 18:11

Testo nascosto, fai click qui per vederlo
Premesse
  • Tom sceglie sempre il percorso più breve;
  • Jerry sceglie sempre il percorso più breve.
Con queste premesse, se $(x_T,y_T)$ è il punto di partenza di Tom, allora a Jerry basta dirigersi verso il punto $(-x_T,-y_T)$ per garantirsi il miglior margine possibile.
Soluzione
Sì, Tom riesce a raggiungere Jerry.
Motivazione
Sia $v_T$ la velocità di Tom e sia $v_J$ la velocità di Jerry. Proprio per come è definita la circonferenza, Jerry per giungere sulla terraferma deve percorrere sempre la stessa distanza; Tom invece deve necessariamente percorrere mezza circonferenza. Dunque si imposta la seguente disuguaglianza: $ \frac{\pi r}{v_T} \leq \frac{r}{v_J}$ da cui segue che deve essere $ \pi \leq \frac{v_T}{v_J}$ . La velocità minima di Tom deve essere pari a $\pi$ volte quella di Jerry, ma $4 > \pi$ e quindi Jerry è spacciato :cry:
universo
New Member
New Member
 
Messaggio: 37 di 60
Iscritto il: 20/11/2018, 00:19

Re: Il gatto e il topo

Messaggioda dissonance » 03/06/2019, 22:22

@universo: e se Jerry, invece di nuotare in linea retta, si sposta lungo una spirale, in modo da muoversi sempre in direzione opposta a Tom? O magari se percorre parte del percorso a spirale e l'ultimo pezzo in linea retta?
dissonance
Cannot live without
Cannot live without
 
Messaggio: 15359 di 15503
Iscritto il: 24/05/2008, 20:39
Località: Nomade

Re: Il gatto e il topo

Messaggioda universo » 04/06/2019, 14:58

Tom invertirebbe direzione ogni volta e si avrebbe uno stallo. Altrimenti devono cadere le premesse fatte.
universo
New Member
New Member
 
Messaggio: 40 di 60
Iscritto il: 20/11/2018, 00:19

Re: Il gatto e il topo

Messaggioda dissonance » 04/06/2019, 15:19

@universo: la tua risposta è in contraddizione con la soluzione di veciorik (vedi link fornito da Alexp). Quindi, una delle due deve essere sbagliata. Non ci ho pensato molto, devo ammettere, ma mi convince maggiormente la soluzione di veciorik.
Ultima modifica di dissonance il 04/06/2019, 16:10, modificato 1 volta in totale.
dissonance
Cannot live without
Cannot live without
 
Messaggio: 15367 di 15503
Iscritto il: 24/05/2008, 20:39
Località: Nomade

Re: Il gatto e il topo

Messaggioda axpgn » 04/06/2019, 15:33

@universo
Non c'è nessuno stallo.
Jerry può sempre farcela.
Testo nascosto, fai click qui per vederlo
Finché Jerry rimane in una circonferenza pari a un quarto di raggio del laghetto, egli si muove più velocemente di Tom e quindi può raggiungere sempre un punto che si trova all'opposto di dove si trova Tom (cioè Jerry e Tom formano un angolo di $180°$ con vertice il centro del laghetto).
Può farlo in molti modi e più o meno velocemente (il più "gettonato" è quello a spirale ma non l'unico) ma può sempre farlo, questo è l'importante.
La conseguenza è che quando Jerry raggiunge il punto che si trova all'opposto di Tom e a tre quarti dalla riva, parte dritto (cioè radialmente) con la sicurezza di arrivarci prima di Tom perché Jerry deve percorrere $3/4r$ mentre Tom deve percorrere $pir$ e siccome $(pir)/(3/4r)=(4pi)/3>4$ … :wink:


Cordialmente, Alex
axpgn
Cannot live without
Cannot live without
 
Messaggio: 13595 di 13820
Iscritto il: 20/11/2013, 23:03

Re: Il gatto e il topo

Messaggioda veciorik » 06/06/2019, 00:51

La risposta a "Riuscirà Jerry a scappare se Tom è 4 volte più veloce ?" è stata abbondantemente discussa qui e non è difficile.

La risposta a "Qual è la velocità minima che deve avere Tom in funzione di quella di Jerry per catturarlo ?" è stata data qui con poche spiegazioni ed è più difficile.

Vi lascio provare un po' con la seconda prima di pubblicare due documenti con la trattazione completa. Li ho scovati oggi. Uno conferma la mia tesi che la prima parte del percorso ottimale è una semicirconferenza di raggio 1/8, che allora non convinse.
"Dietro ogni problema c'è un'opportunità" - "Nelle prove naturali non si deve ricercare l'esattezza geometrica" - "Stimo più il trovar un vero, benché di cosa leggiera, che 'l disputar lungamente delle massime questioni senza conseguir verità nissuna" (Galileo Galilei)
Avatar utente
veciorik
Junior Member
Junior Member
 
Messaggio: 417 di 424
Iscritto il: 08/03/2014, 00:42
Località: stra(VE)

Prossimo

Torna a Pensare un po' di più

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti