Sommabilità di una funzione continua su un compatto

Messaggioda andreadel1988 » 13/03/2023, 21:24

Ogni funzione continua su un compatto $KsubeRR^n$ è $L^n$-sommabile.
Allora intanto mostro che gli aperti di $RR^n$ sono misurabili. Se prendo la topologia euclidea $(RR^n,\tau_e)$ questa coincide con la topologia prodotto $(RR^pxxRR^(n-p), \tau_(pro d.))$ con $1<=p<=n-1$. Perciò ogni aperto di $RR^n$ si può scrivere come unione di rettangoli di $RR^pxxRR^(n-p)$, ma siccome quest'ultimi sono misurabili allora ogni aperto di $ RR^n $ è misurabile. Quindi abbiamo anche che i chiusi sono misurabili e in particolari i compatti (chiusi e limitati). Ora poichè i compatti sono limitati $ AAx,yinK $ tale che $ ||x-y||_E<=l $. Se prendo il cubo $C$ di lato $l$ si ha che $ KsubeC $ e quindi per monotonia $ L^n(K)<=L^n(C)=l^n<+infty $. Infine se $f$ è continua su $K$ per teorema di Weiestrass $ su p_{K} f $ e $ i nf_{K} f $ sono limitati (e coicidono con il massimo e minimo).
Posto $ \int_{K}|f| dL^n=i nf{S(|f|,sigma)|sigmain\Omega(K)} $. Presa $sigma={A_i |i=1,...,n}$ una scomposizione di $K$, abbiamo che $S(|f|,sigma)=\sum_{i=1}^(n) su p_(A_i)|f|*L^n(A_i)$. Siccome vale che $A_isubeK$ e $s up_K|f|=max{|i nf_K f|, |su p_K f|}$, allora $L^n(A_i)<+infty$ e $s up_(A_i)|f|<+infty$, perciò $S(|f|,sigma)$ (qualunque sia $sigma$) è finito e quindi $ \int_{K}|f| dL^n$ è finito, da cui $f$ sommabile.
Durante questa mia dimostrazione mi è sorto un dubbio, posso effettivamente supporre che ogni scomposizione di $K$ sia finita, ovvero $i<+infty$? Perchè se esiste una scomposizione di $K$ infinita allora la somma superiore relativa a questa scomposizione sarebbe $+infty$ perchè sarebbe la somma di infiniti addendi (positivi e forse alcuni nulli)...
“E ora sono diventato la morte. Il distruttore di mondi” J. Robert Oppenheimer
andreadel1988
Senior Member
Senior Member
 
Messaggio: 479 di 1184
Iscritto il: 26/08/2022, 09:15

Re: Sommabilità di una funzione continua su un compatto

Messaggioda ViciousGoblin » 13/03/2023, 21:47

Scusa ma ho capito poco della tua dimostrazione :(

andreadel1988 ha scritto:Ogni funzione continua su un compatto $KsubeRR^n$ è $L^n$-sommabile.
Allora intanto mostro che gli aperti di $RR^n$ sono misurabili. Se prendo la topologia euclidea $(RR^n,\tau_e)$ questa coincide con la topologia prodotto $(RR^pxxRR^(n-p), \tau_(pro d.))$ con $1<=p<=n-1$. Perciò ogni aperto di $RR^n$ si può scrivere come unione di rettangoli di $RR^pxxRR^(n-p)$,

perciò? che proprietà usi?
andreadel1988 ha scritto:ma siccome quest'ultimi sono misurabili allora ogni aperto di $ RR^n $ è misurabile. Quindi abbiamo anche che i chiusi sono misurabili e in particolari i compatti (chiusi e limitati).

comunque le affermazioni che fai sono vere.
andreadel1988 ha scritto:
Ora poichè i compatti sono limitati $ AAx,yinK $ tale che $ ||x-y||_E<=l $. Se prendo il cubo $C$ di lato $l$ si ha che $ KsubeC $ e quindi per monotonia $ L^n(K)<=L^n(C)=l^n<+infty $. Infine se $f$ è continua su $K$ per teorema di Weiestrass $ su p_{K} f $ e $ i nf_{K} f $ sono limitati (e coicidono con il massimo e minimo).
Posto $ \int_{K}|f| dL^n=i nf{S(|f|,sigma)|sigmain\Omega(K)} $. Presa $sigma={A_i |i=1,...,n}$ una scomposizione di $K$, abbiamo che $S(|f|,sigma)=\sum_{i=1}^(n) su p_(A_i)|f|*L^n(A_i)$. Siccome vale che $A_isubeK$ e $s up_K|f|=max{|i nf_K f|, |su p_K f|}$, allora $L^n(A_i)<+infty$ e $s up_(A_i)|f|<+infty$, perciò $S(|f|,sigma)$ (qualunque sia $sigma$) è finito e quindi $ \int_{K}|f| dL^n$ è finito, da cui $f$ sommabile.
Durante questa mia dimostrazione mi è sorto un dubbio, posso effettivamente supporre che ogni scomposizione di $K$ sia finita, ovvero $i<+infty$? Perchè se esiste una scomposizione di $K$ infinita allora la somma superiore relativa a questa scomposizione sarebbe $+infty$ perchè sarebbe la somma di infiniti addendi (positivi e forse alcuni nulli)...

Ma che criterio di integrabilità usi? Dai per buono che le funzioni continue sono misurabili? (a quel punto l'integrabilità mi sembra immediata). Magari quello che dici è giusto e sono io che non capisco perché ho delle definizioni diverse.
Tieni presente che le funzioni continue sui compatti sono anche Riemann integrabili (e quindi puoi usare suddivisioni finite - ma non so se c'entra con la tua domanda).
You are in a comfortable tunnel like hall.
To the east there is a round green door.
>OPEN DOOR
>GO EAST
静かに時の傷に苦しむ
群れを組んでわ飛ばない鷹
Avatar utente
ViciousGoblin
Advanced Member
Advanced Member
 
Messaggio: 1677 di 2036
Iscritto il: 09/03/2008, 17:38
Località: Pisa

Re: Sommabilità di una funzione continua su un compatto

Messaggioda andreadel1988 » 13/03/2023, 22:55

ViciousGoblin ha scritto:Scusa ma ho capito poco della tua dimostrazione :(

andreadel1988 ha scritto:Ogni funzione continua su un compatto $KsubeRR^n$ è $L^n$-sommabile.
Allora intanto mostro che gli aperti di $RR^n$ sono misurabili. Se prendo la topologia euclidea $(RR^n,\tau_e)$ questa coincide con la topologia prodotto $(RR^pxxRR^(n-p), \tau_(pro d.))$ con $1<=p<=n-1$. Perciò ogni aperto di $RR^n$ si può scrivere come unione di rettangoli di $RR^pxxRR^(n-p)$,

perciò? che proprietà usi?

Mi serviva per dimostrare che i compatti hanno $L^n$-misura finita
ViciousGoblin ha scritto:
andreadel1988 ha scritto:Ora poichè i compatti sono limitati $ AAx,yinK $ tale che $ ||x-y||_E<=l $. Se prendo il cubo $C$ di lato $l$ si ha che $ KsubeC $ e quindi per monotonia $ L^n(K)<=L^n(C)=l^n<+infty $. Infine se $f$ è continua su $K$ per teorema di Weiestrass $ su p_{K} f $ e $ i nf_{K} f $ sono limitati (e coicidono con il massimo e minimo).
Posto $ \int_{K}|f| dL^n=i nf{S(|f|,sigma)|sigmain\Omega(K)} $. Presa $sigma={A_i |i=1,...,n}$ una scomposizione di $K$, abbiamo che $S(|f|,sigma)=\sum_{i=1}^(n) su p_(A_i)|f|*L^n(A_i)$. Siccome vale che $A_isubeK$ e $s up_K|f|=max{|i nf_K f|, |su p_K f|}$, allora $L^n(A_i)<+infty$ e $s up_(A_i)|f|<+infty$, perciò $S(|f|,sigma)$ (qualunque sia $sigma$) è finito e quindi $ \int_{K}|f| dL^n$ è finito, da cui $f$ sommabile.
Durante questa mia dimostrazione mi è sorto un dubbio, posso effettivamente supporre che ogni scomposizione di $K$ sia finita, ovvero $i<+infty$? Perchè se esiste una scomposizione di $K$ infinita allora la somma superiore relativa a questa scomposizione sarebbe $+infty$ perchè sarebbe la somma di infiniti addendi (positivi e forse alcuni nulli)...

Ma che criterio di integrabilità usi? Dai per buono che le funzioni continue sono misurabili? (a quel punto l'integrabilità mi sembra immediata). Magari quello che dici è giusto e sono io che non capisco perché ho delle definizioni diverse.

Ho usato la definizione di integrale di Lebesgue, ovvero è uguale all'integrale superiore e inferiore...
Ultima modifica di andreadel1988 il 14/03/2023, 00:35, modificato 1 volta in totale.
“E ora sono diventato la morte. Il distruttore di mondi” J. Robert Oppenheimer
andreadel1988
Senior Member
Senior Member
 
Messaggio: 480 di 1184
Iscritto il: 26/08/2022, 09:15

Re: Sommabilità di una funzione continua su un compatto

Messaggioda andreadel1988 » 14/03/2023, 00:31

ViciousGoblin ha scritto: Dai per buono che le funzioni continue sono misurabili? .

Vabbe viene dal fatto che $f$ è continua dato che se prendi un qualunque aperto $A$ di $RR$ hai che $f^-1(A)$ è aperto di $K$ e per quanto ho detto prima è misurabile (l'aperto), per cui $f$ è misurabile. Perciò siccome $f$ è misurabile e pure $K$ lo è, allora $f$ (e quindi anche $|f|$) è integrabile secondo Lebesgue (ovvero $ \int_{K}f dL^n$ può essere finito, $+infty$, $-infty$). Ma a me serve mostrare che $f$ è "SOMMABILE", ovvero che $ \int_{K}|f| dL^n$ è finito.
Ultima modifica di andreadel1988 il 14/03/2023, 01:11, modificato 3 volte in totale.
“E ora sono diventato la morte. Il distruttore di mondi” J. Robert Oppenheimer
andreadel1988
Senior Member
Senior Member
 
Messaggio: 481 di 1184
Iscritto il: 26/08/2022, 09:15

Re: Sommabilità di una funzione continua su un compatto

Messaggioda gugo82 » 14/03/2023, 00:58

@andreadel1988: Ma da che testo studi?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Cannot live without
Cannot live without
 
Messaggio: 26586 di 44972
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Sommabilità di una funzione continua su un compatto

Messaggioda andreadel1988 » 14/03/2023, 01:08

gugo82 ha scritto:@andreadel1988: Ma da che testo studi?

Dagli appunti presi a lezione, perchè?
“E ora sono diventato la morte. Il distruttore di mondi” J. Robert Oppenheimer
andreadel1988
Senior Member
Senior Member
 
Messaggio: 482 di 1184
Iscritto il: 26/08/2022, 09:15

Re: Sommabilità di una funzione continua su un compatto

Messaggioda ViciousGoblin » 14/03/2023, 15:11

Ti mando dei commenti più precisi.

andreadel1988 ha scritto:Ogni funzione continua su un compatto $KsubeRR^n$ è $L^n$-sommabile.
Allora intanto mostro che gli aperti di $RR^n$ sono misurabili. Se prendo la topologia euclidea $(RR^n,\tau_e)$ questa coincide con la topologia prodotto $(RR^pxxRR^(n-p), \tau_(pro d.))$ con $1<=p<=n-1$. Perciò ogni aperto di $RR^n$ si può scrivere come unione di rettangoli di $RR^pxxRR^(n-p)$, ma siccome quest'ultimi sono misurabili allora ogni aperto di $ RR^n $ è misurabile.

Qui mi pare vuoi dimostrare che gli aperti sono misurabili e lo vuoi fare dimostrando che se $A$ è aperto allora $A$ è unione (NUMERABILE) di rettangoli. Tu dici che questo SEGUE (scrivi "perciò") dal fatto che la topologia euclidea $(RR^n,\tau_e)$ coincide con la topologia prodotto $(RR^pxxRR^(n-p), \tau_(pro d.))$ con $1<=p<=n-1$. Sono un po' perplesso da questo passaggio, anche se il fatto che ogni aperto è unione numerabile di rettangoli è vero.
andreadel1988 ha scritto:
Quindi abbiamo anche che i chiusi sono misurabili e in particolari i compatti (chiusi e limitati). Ora poichè i compatti sono limitati $ AAx,yinK $ tale che $ ||x-y||_E<=l $. Se prendo il cubo $C$ di lato $l$ si ha che $ KsubeC $ e quindi per monotonia $ L^n(K)<=L^n(C)=l^n<+infty $. Infine se $f$ è continua su $K$ per teorema di Weiestrass $ su p_{K} f $ e $ i nf_{K} f $ sono limitati (e coicidono con il massimo e minimo).

OK. Se $K$ è compatto allora è limitato e dunque ha misura finita (è misurabile perché è chiuso): Se $f:K\to\mathbb{R}$ è continua su $K$ compatto allora $f$ (e anche $|f|$) è limitata.
andreadel1988 ha scritto:
Posto $ \int_{K}|f| dL^n=i nf{S(|f|,sigma)|sigmain\Omega(K)} $. Presa $sigma={A_i |i=1,...,n}$ una scomposizione di $K$, abbiamo che $S(|f|,sigma)=\sum_{i=1}^(n) su p_(A_i)|f|*L^n(A_i)$. Siccome vale che $A_isubeK$ e $s up_K|f|=max{|i nf_K f|, |su p_K f|}$, allora $L^n(A_i)<+infty$ e $s up_(A_i)|f|<+infty$, perciò $S(|f|,sigma)$ (qualunque sia $sigma$) è finito e quindi $ \int_{K}|f| dL^n$ è finito, da cui $f$ sommabile.

Dopo aver riletto un po' di volte la tua dim. mi pare di capire cosa fai. Sostanzialmente stai costruendo una "somma superiore" $S(|f|,\sigma)$ finita per dedurne che $|f|$ ha integrale finito. Ora questo va bene se sai che $f$ è misurabile e quindi se fai la dimostrazione per bene lo devi dire (poi me l'hai spiegato nell'altro messaggio e siamo d'accordo). Una volta che sai che $f$ è misurabile potresto ricavare la tesi in una riga:
$\int_K|f(x)|dx\leq\int_K\mbox{max}{|f(x)| : x\in K}dx=L^n(K)\mbox{max}{|f(x)| : x\in K}<+\infty$
(il tutto ha senso perché $f$ è misurabile).

Tu però ci vuoi arrivare maggiorando con una somma superiore e ti sei incartato perché ti sembra necessario che la suddivisione sia fatta da un numero finito di intervalli. Se ragioni bene vedi che non ti serve, infatti:
$S(|f|,sigma)=\sum_{i=1}^(n) su p_(A_i)|f|*L^n(A_i)\leq\sum_{i=1}^(n) su p_(K)|f|*L^n(A_i)=su p_(K)|f|*\sum_{i=1}^(n) L^n(A_i)\leq su p_(K)|f|*L^n(K)$.

Che poi in realtà di $A_i$ te ne basta uno solo e cioè un rettangolo che contiene $K$

andreadel1988 ha scritto:Durante questa mia dimostrazione mi è sorto un dubbio, posso effettivamente supporre che ogni scomposizione di $K$ sia finita, ovvero $i<+infty$? Perchè se esiste una scomposizione di $K$ infinita allora la somma superiore relativa a questa scomposizione sarebbe $+infty$ perchè sarebbe la somma di infiniti addendi (positivi e forse alcuni nulli)...

Va detto che nel caso di una continua su un compatto c'è l'integrabilità secondo Riemann e quindi puoi trovare somme superiori e somme inferiori basate su un numero finito di rettangoli tra loro arbitrariamente vicine.
You are in a comfortable tunnel like hall.
To the east there is a round green door.
>OPEN DOOR
>GO EAST
静かに時の傷に苦しむ
群れを組んでわ飛ばない鷹
Avatar utente
ViciousGoblin
Advanced Member
Advanced Member
 
Messaggio: 1678 di 2036
Iscritto il: 09/03/2008, 17:38
Località: Pisa

Re: Sommabilità di una funzione continua su un compatto

Messaggioda dissonance » 14/03/2023, 17:33

@ViciousGoblin: =D>

Eccellente lavoro pedagogico!
dissonance
Moderatore
Moderatore
 
Messaggio: 17269 di 27760
Iscritto il: 24/05/2008, 19:39
Località: Nomade

Re: Sommabilità di una funzione continua su un compatto

Messaggioda andreadel1988 » 29/06/2023, 12:29

ViciousGoblin ha scritto: Una volta che sai che $f$ è misurabile potresto ricavare la tesi in una riga:
$\int_K|f(x)|dx\leq\int_K\mbox{max}{|f(x)| : x\in K}dx=L^n(K)\mbox{max}{|f(x)| : x\in K}<+\infty$
(il tutto ha senso perché $f$ è misurabile).
.

Ok, posso dire che $f$ è misurabile poichè siccome è continua se prendo $\Omega$ un aperto di $RR^n$ allora $f^-1(\Omega)$ è aperto di $RR$ e quindi misurabile ?(una volta mostrato ciò allora $abs(f)$ sarà misurabile e concludo come hai detto tu)
“E ora sono diventato la morte. Il distruttore di mondi” J. Robert Oppenheimer
andreadel1988
Senior Member
Senior Member
 
Messaggio: 770 di 1184
Iscritto il: 26/08/2022, 09:15


Torna a Analisi superiore

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite