Equazione differenziale di secondo ordine non omogenea

Messaggioda pepp1995 » 13/09/2017, 11:59

$y''+y=2xcosx$

Mi è specificato di risolverla col Metodo di Somiglianza. Ora quel che faccio è cercare una soluzione della forma :
$y(x)=cosx(Ax+B)+Csinx$

Il problema è che dopo aver sostituito le derivate nell'equazione completa ottengo un sistema della forma :
$ { ( 0=0 ),( A=-x ):} $

E quindi mi chiedo : è corretto fin qui? come si procede?
pepp1995
Junior Member
Junior Member
 
Messaggio: 63 di 119
Iscritto il: 24/10/2015, 14:10
Google Chrome 61.0.316 Google Chrome 61.0.316
Windows 8 64 bits Windows 8 64 bits

Re: Equazione differenziale di secondo ordine non omogenea

Messaggioda pilloeffe » 13/09/2017, 12:43

Ciao pepp1995,

L'equazione caratteristica dell'equazione differenziale omogenea associata è la seguente:

$\lambda^2 + 1 = 0 \implies \lambda_{1,2} = \pm i $

Quindi la soluzione dell'equazione differenziale omogenea associata si può scrivere nella forma seguente:

$y_o(x) = c_1 sin x + c_2 cos x $

La soluzione particolare è del tipo:

$y_p(x) = x[P_p(x) cos x + Q_p(x) sin x] $

ove $ deg[P_p(x)] = deg[Q_p(x)] = deg[2x] = 1 \implies P_p(x) = ax + b, Q_p(x) = cx + d $ con $a$, $b$, $c$ e $d$ opportune costanti da determinare.
pilloeffe
Average Member
Average Member
 
Messaggio: 601 di 964
Iscritto il: 07/02/2017, 15:45
Firefox 55.0 Firefox 55.0
Windows Seven Windows Seven

Re: Equazione differenziale di secondo ordine non omogenea

Messaggioda pepp1995 » 13/09/2017, 15:26

Risolto . Grazie mille. Avevo sbagliato l'equazione caratteristica =)
pepp1995
Junior Member
Junior Member
 
Messaggio: 64 di 119
Iscritto il: 24/10/2015, 14:10
Google Chrome 61.0.316 Google Chrome 61.0.316
Windows 8 64 bits Windows 8 64 bits


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: daenerys e 21 ospiti