Equaz.Diff. Condizioni iniziali / bordo

Messaggioda CLaudio Nine » 13/06/2019, 01:25

Ciao a tutti,

Qualcuno saprebbe spiegarmi la differenza, nelle equazioni differenziali tra problema con condizioni iniziali e problema con condizioni al bordo?

Io so che il problema con condizioni iniziali è anche detto problema di Cauchy, e che sotto opportune ipotesi tale problema ammetterà un'unica soluzione.


-Cosa si intende per problema al bordo?
- Qualcuno saprebbe mostrarmi la differenza tra i due tipi di problemi?

Meno importante:
-Come mai non è possibile dire nulla sulla probabile esistenza di una o più soluzioni in questo tipo di problema, a differenza di quanto avviene nei problemi di Cauchy?
CLaudio Nine
Junior Member
Junior Member
 
Messaggio: 118 di 126
Iscritto il: 27/09/2018, 21:13

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda pilloeffe » 13/06/2019, 09:38

Ciao Claudio Nine,

Provo a risponderti brevemente, naturalmente senza alcuna pretesa di completezza dato che l'argomento sono le Equazioni Differenziali Ordinarie (EDO o ODE in inglese) e alle derivate parziali (PDE in inglese) ed è dunque piuttosto vasto... :wink:
Mentre i PdC (Problemi di Cauchy) possono essere visti come problemi di tipo temporale, in quanto vengono imposte condizioni iniziali e si studia l’evolvere nel tempo dell’equazione (o meglio del problema descritto dall'equazione), i problemi al contorno possono essere visti come problemi di tipo spaziale, con condizioni sul bordo del dominio sul quale è definita l’equazione differenziale coinvolta nel problema. A differenza dei PdC, i problemi al contorno potrebbero non avere alcuna soluzione, oppure avere infinite soluzioni oppure ancora un’unica soluzione. Crolla dunque il risultato di unicità della soluzione dei PdC.
Ci sono diversi tipi di condizioni al contorno, ma le più comuni sono quelle che specificano il valore della soluzione (Dirichlet) e il valore della sua derivata (Neumann). Assegnando entrambi i valori prendono il nome di condizioni al contorno di Cauchy.
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 2885 di 3184
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda CLaudio Nine » 13/06/2019, 13:34

pilloeffe ha scritto: sono le Equazioni Differenziali Ordinarie (EDO o ODE in inglese)


Ciao pilloeffe,
innanzitutto grazie per avermi risposto.
Nel mio corso di studi abbiamo trattato solo EDO in forma normale.
Riusciresti a farmi notare tramite un esempio, la differenza tra problema di Cauchy e problema al bordo? A me sembrano uguali!!!
CLaudio Nine
Junior Member
Junior Member
 
Messaggio: 119 di 126
Iscritto il: 27/09/2018, 21:13

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda arnett » 13/06/2019, 14:25

Vediamo se un esempio in 1D ti chiarisce la situazione. Considera il problema ai limiti
$\{(y''+y=0),(y(0)=y(\pi)=1):}$

e il problema di Cauchy
$\{(y''+y=0),(y(0)=y'(0)=1):}$

L'equazione differenziale è la stessa (ed è super regolare, coefficienti costanti e ogni regolarità che desideri) e di conseguenza l'integrale generale è il medesimo. Ma il primo problema non ha soluzione (se non ho fatto male i conti).
"ci scruta poi gira se ne va"
arnett
Senior Member
Senior Member
 
Messaggio: 902 di 1190
Iscritto il: 18/07/2018, 09:08

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda gugo82 » 13/06/2019, 14:27

Esempi scemi.

Il P.d.C.:
\[
\begin{cases}
y^{\prime \prime} (x) = 0 & \text{, in } ]0,1[\\
y(0) = q_0 \\
y^\prime (0) = m_0
\end{cases}
\]
ha unica soluzione $y(x) := m_0 x + q_0$, ed anche il B.V.P. (condizioni di Dirichlet):
\[
\begin{cases}
y^{\prime \prime} (x) = 0 & \text{, in } ]0,1[\\
y(0) = q_0 \\
y (1) = q_1
\end{cases}
\]
ha unica soluzione $y(x) = (q_1 - q_0) x + q_0$; tuttavia, il B.V.P. (condizioni di Neumann):
\[
\begin{cases}
y^{\prime \prime} (x) = 0 & \text{, in } ]0,1[\\
y^\prime (0) = m_0 \\
y^\prime (1) = m_1
\end{cases}
\]
ha infinite soluzioni se $m_0 = m_1$ e nessuna soluzione se $m_0 != m_1$ (perché?).
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 21669 di 22607
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda CLaudio Nine » 13/06/2019, 19:09

gugo82 ha scritto:(perché?).


Forse perché, dato che la derivata seconda è uguale a zero per ogni $x in (0;1)$, allora la derivata prima sarà sicuramente una costante.
Dovrà essere lo stesso numero (stessa pendenza del grafico della funzione) per ogni $x$ dell'intervallo.
Corretto?

Vediamo un po' se ho capito.
Dato il seguente problema al bordo ($t$ è la variabile indipendente):

$\{(x''= t - (1/4)x(t)),(x(0)=0),(x(8)=0):}$

Io procederei in questo modo (se ne avete voglia, ditemi se dico qualche stupidaggine):

-Trovo soluzione dell'equazione del secondo ordine non omogenea grazie a metodo di variazione delle costanti;
-Dopo aver trovato la soluzione, verifico se esiste una o più funzioni che soddisfano le due condizioni al bordo, sostituendo i valori $t_0$ ed $x_0$ al posto delle costanti $c_1$ e $c_2$ e della $x$ della mia soluzione.
CLaudio Nine
Junior Member
Junior Member
 
Messaggio: 123 di 126
Iscritto il: 27/09/2018, 21:13

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda gugo82 » 13/06/2019, 19:33

Sì a tutto.

Però non serve usare la variazione delle costanti per trovare l’integrale particolare della EDO completa. :wink:
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 21678 di 22607
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda CLaudio Nine » 13/06/2019, 20:42

gugo82 ha scritto:Sì a tutto.

Però non serve usare la variazione delle costanti per trovare l’integrale particolare della EDO completa. :wink:


Come mai non serve?
Perdona l'ignoranza, ma è l'unico metodo che conosco per trovare soluzioni della EDO del secondo ordine non omogenea.
CLaudio Nine
Junior Member
Junior Member
 
Messaggio: 124 di 126
Iscritto il: 27/09/2018, 21:13

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda CLaudio Nine » 13/06/2019, 20:48

gugo82 ha scritto:Sì a tutto.

Però non serve usare la variazione delle costanti per trovare l’integrale particolare della EDO completa. :wink:


Esiste un altro metodo? Se me lo potresti spiegare (o linkare una spiegazione) mi faresti un favorone!
Nel frattempo, ad ogni modo, ti ringrazio.
CLaudio Nine
Junior Member
Junior Member
 
Messaggio: 125 di 126
Iscritto il: 27/09/2018, 21:13

Re: Equaz.Diff. Condizioni iniziali / bordo

Messaggioda gugo82 » 13/06/2019, 21:00

Metodo di somiglianza, ne ho scritto in lungo ed in largo sul forum.

Nel tuo caso l’integrale particolare, evidentemente e senza fare conti, è $x_p(t) := 4 t$, dunque l’integrale generale della EDO è $x(t) = 4t + c_1 e^(1/2 t) + c_2 e^(-1/2 t)$.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 21681 di 22607
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Prossimo

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 27 ospiti