### Proiezioni negli $$L^p$$

Problema. Sia $$f \in L^p ([-1,1])$$, con $$p \in [1, +\infty)$$, e consideriamo $Y = \{h \in L^p ([-1,1]) \, : \, h \text{ è pari}\}.$$$Y$$ è un sottospazio chiuso. Mostrare che $$g(x) = (f(x)+f(-x))/2$$ è tale che $\min_{h \in Y} \|f - h\|_p = \|f - g \|_p.$
E' vero anche per $$p = \infty$$?
consumami
distruggimi
è un po' che non mi annoio
obnoxious
Junior Member

Messaggio: 61 di 151
Iscritto il: 22/03/2019, 11:45

### Re: Proiezioni negli $$L^p$$

Testo nascosto, fai click qui per vederlo
For $$f \in L^p([-1,1])$$ we want to solve the minimization problem $0 \le \ell= \inf_{ h \in Y } \|f - h \|_p = \inf_{ \tilde{h} \in Y } \|f_o - \tilde{h} \|_p$ where we set $$\tilde{h}= h - f_e$$ and $$f_e$$, $$f_o$$ are respectively the (essentially unique) even and odd parts of $$f$$ defined by $f_e (x) = \frac{f(x) + f(-x)}{2} \quad \text{and} \quad f_o (x) = \frac{f(x) - f(-x)}{2}$almost everywhere. By Theorem 7' page 76 of Lax's book (we switch the role of $$Y$$ and $$Y^{\bot}$$ with respect to the formulation of the theorem, but in this case the operation is harmless because $$Y$$ is closed and therefore $$(Y^{\bot})^{\bot} =Y$$) we have that (using duality arguments) $\ell = \sup_{l \in Y^{\bot}, \|l\| \le 1} |l(f_o)| = \sup_{g \in Y^{\bot}, \|g\|_q \le 1} \left| \int_{-1}^1 f_o g \, d \mu \right| \le \|f_o\|_p$ where the supremum is actually reached by $$\bar{g} = f_o |f_o|^{p-2} / \|f_o\|_p ^{p-1} \in L^q ([-1,1]) \cap Y^{\bot}$$, which is an odd function (indeed $$Y^{\bot}$$ contains all the odd functions belonging to $$L^q$$); here $$q$$ is the Hölder conjugate exponent of $$p$$. We conclude noticing that $\left| \int_{-1}^1 f_o \bar{g} \, d \mu \right| = \|f_o\|_p$ and therefore $\inf_{ \tilde{h} \in Y } \|f_o - \tilde{h} \|_p = \| f_o \|_p.$Now, for $$p \in (1, +\infty)$$ the spaces $$L^p ([-1,1])$$ are uniformly convex and since $$Y$$ is a linear closed subspace the minimizer exists and it is unique. It follows that $$\tilde{h}=0$$ a.e. which implies $$h = f_e$$ almost everywhere. For $$p=1$$ the infimum is reached for sure for $$\tilde{h} = 0$$, but it not necessarily unique.
consumami
distruggimi
è un po' che non mi annoio
obnoxious
Junior Member

Messaggio: 65 di 151
Iscritto il: 22/03/2019, 11:45

### Re: Proiezioni negli $$L^p$$

Sarebbe carino, secondo me, riflettere su una versione più generale dello stesso problema. Supponiamo che $$\Omega$$ sia uno spazio di misura e che $$G$$ sia un gruppo finito che agisce su $$\Omega$$. Ad esempio, siano $$\Omega=[-1, 1]$$ e $$G=\{\mathrm{id}, \sigma\}$$, dove $$\sigma(x)=-x$$, come nel post iniziale. Ora, il sottospazio
$Y:=\{f\in L^p(\Omega)\ :\ f\circ g = f,\ \forall g\in G\}$
è chiuso. Per ogni $$f\in L^p(\Omega)$$, definiamo
$f_G(x):=\frac{1}{|G|}\sum_{g\in G} f(g\cdot x).$
È vero che
$\min_{h\in Y} \lVert f-h\rVert_p= \lVert f-f_G\rVert_p?$
dissonance
Cannot live without

Messaggio: 15524 di 15879
Iscritto il: 24/05/2008, 19:39
Località: Nomade

Torna a Pensare un po' di più

### Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite