Determinazione nei problemi di cauchy

Messaggioda roby2394 » 10/07/2019, 10:49

Prendendo come esempio questo esercizio
\( \begin{cases} y''−4y'+3y=e^{3x}+x\\y(0)=0 \\ y'(0)=1 \end{cases} \)

Facendo il determinante ed essendo lambda1 e lambda 2 diversi abbiamo questo risultato:
\(y(x)=c1e^x+c2e^{3x}+φ(x) \) per favore

Mi servirebbe un link all'argomento o un indirizzamento per sapere i vari casi di come determinare la soluzione particolare ogni volta
Ultima modifica di roby2394 il 11/07/2019, 12:43, modificato 1 volta in totale.
roby2394
Starting Member
Starting Member
 
Messaggio: 12 di 19
Iscritto il: 17/08/2013, 10:28

Re: Determinazione nei problemi di cauchy

Messaggioda pilloeffe » 10/07/2019, 22:30

Ciao roby2394,

Sei recidivo: ti era stato chiesto in precedenza di non postare con immagini che poi vanno perdute... Invece di rispondere al tuo quesito, ti risponderò scrivendoti il modo corretto di scrivere il tuo problema, così potrai copiarlo e sostituire quelle immagini orrende del tuo OP. Se lo farai poi magari ti risponderò... :wink:

$\{(y'' - 4y' + 3y = e^{3x} + x),(y(0) = 0),(y'(0) = 1):}$

Soluzione dell'equazione differenziale:

$y(x) = c_1 e^x + c_2 e^{3x} + \varphi(x) $

ove $\varphi(x) $ è una soluzione particolare dell'equazione differenziale proposta.
pilloeffe
Advanced Member
Advanced Member
 
Messaggio: 2946 di 2975
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena

Re: Determinazione nei problemi di cauchy

Messaggioda roby2394 » 11/07/2019, 12:31

Hai ragione, ma ho dovuto usare un pc del 800 e ad ogni digitazione stava 1 minuto intero(non scherzo) mentre con il caricamento della foto 2 minuti e fine. Mi dispiace ancora
roby2394
Starting Member
Starting Member
 
Messaggio: 17 di 19
Iscritto il: 17/08/2013, 10:28

Re: Determinazione nei problemi di cauchy

Messaggioda pilloeffe » 12/07/2019, 07:59

Il primo computer Turing-completo basato sul sistema numerico binario e totalmente programmabile fu lo Z3, costruito in Germania da Konrad Zuse, che lo realizzò praticamente da solo nel 1941 usando componenti riciclati di telefonia: mi pare un po' difficile che tu ne abbia usato uno precedente... :wink:
Comunque, scherzi a parte, il discorso delle soluzioni particolari di una equazione differenziale non si può liquidare in un post. Brevemente: l'equazione differenziale proposta è lineare per cui si può applicare il principio di sovrapposizione degli effetti e determinare le soluzioni particolari delle due equazioni differenziali

$ y_1'' - 4y_1' + 3y_1 = e^{3x} $

$ y_2'' - 4y_2' + 3y_2 = x $

e poi sommarle. Si trova

$y(x) = c_1 e^x + c_2 e^{3x} + \varphi(x) $

ove $ \varphi(x) = 1/2 x e^{3x} + x/3 + 4/9 $

A questo punto per risolvere il PdC proposto basta imporre le due condizioni $y(0) = 0 $ e $y'(0) = 1 $ determinando in tal modo i valori delle due costanti $c_1 $ e $c_2 $.
pilloeffe
Advanced Member
Advanced Member
 
Messaggio: 2950 di 2975
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti