Infinito più forte

Messaggioda michael046 » 22/07/2019, 22:33

Salve ragazzi ho da studiare la seguente serie:
$ sum_(n = 1 ) arctan (1/(sqrt n log^2n)) $
partiamo dal presupposto che è una serie a termini positivi io l'ho studiata nel modo seguente:
$ arctan (1/(sqrt n log^2n))~ 1/(sqrtnlog^2n) $
dopo di che ho applicato il criterio di condensazione di cauchy facendola diventare
$ 2^n/(sqrt(2^n)log^2(2^n) $
facendo le dovute semplificazioni arrivo alla conclusione che la serie data ha lo stesso carattere del rapporto
$ sqrt(2^n)/n^2 $
allora io so che la serie deve divergere positivamente, quindi il limite di quel rapporto deve fare $ +oo $
ora io so che l'esponenziale è sicuramente più forte del quadrato, ma ciò vale anche se l'esponenziale è sotto radice? Qualcuno che riesce a dimostrarmelo in qualche modo?
michael046
Starting Member
Starting Member
 
Messaggio: 9 di 18
Iscritto il: 02/07/2019, 21:46

Re: Infinito più forte

Messaggioda pilloeffe » 23/07/2019, 01:13

Ciao michael046,

Innanzitutto si assumerà che la serie proposta sia la seguente:

$ \sum_{n = 2}^{+\infty} arctan (1/(sqrt n log^2n)) $

Questo perché se $n $ partisse da $1 $ si annullerebbe il logaritmo al denominatore... :wink:
michael046 ha scritto: [...] arrivo alla conclusione che la serie data ha lo stesso carattere del rapporto

No, ha lo stesso carattere della serie seguente:

$ \sum_{n = 1}^{+\infty} sqrt(2^n)/n^2 $

Quest'ultima non può convergere in quanto non è soddisfatta la condizione necessaria di convergenza di Cauchy $\lim_{n \to +\infty} a_n = 0 $ e, dato che è a termini positivi, non può che divergere positivamente.
D'altronde la serie

$ \sum_{n = 2}^{+\infty} 1/(sqrt n log^2n) $

è una serie armonica generalizzata di tipo II:

$ \sum_{n = 2}^{+\infty} 1/(n^{\alpha} log^{\beta}n) $

che converge solo se $\alpha > 1 \vv \alpha = 1 ^^ \beta > 1 $ e dato che nel caso in esame $\alpha = 1/2 < 1 $ e $\beta = 2 $ siamo sicuri che diverge positivamente.
Dai un'occhiata anche qui.
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 2980 di 3040
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena

Re: Infinito più forte

Messaggioda michael046 » 23/07/2019, 10:47

Ti chiedo scusa per la domanda stupidissima ma quei simboli di et e vel mi mettono un pò in crisi
michael046 ha scritto:che converge solo se α>1∨α=1∧β>1
ciò signica che la serie converge se
$ alpha > 1 $ oppure se $ alpha = 1 $ e $ beta >1 $ giusto?
oppure $beta>1$ anche nel caso in cui $alpha >1$??
So che è difficile comprendere ciò che dico ma ti prego di provarci ahahah
michael046
Starting Member
Starting Member
 
Messaggio: 10 di 18
Iscritto il: 02/07/2019, 21:46

Re: Infinito più forte

Messaggioda pilloeffe » 24/07/2019, 01:30

michael046 ha scritto:[...] ciò signica che la serie converge se $\alpha >1 $ oppure se $\alpha =1 $ e $\beta > 1 $ giusto?

Sì, :smt023
pilloeffe
Cannot live without
Cannot live without
 
Messaggio: 2981 di 3040
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 23 ospiti