Re: Integrali con errore 10^-2

Messaggioda maxira » 17/08/2019, 09:20

Allora forse sto sbagliando la derivata.

$ f'=(-2e^(-x))/(4+e^(-2x)) $

$ f''=(8e^(-x)-2e^(-3x))/(4+e^(-2x))^2 $

E trovo:

$ f''(0)=6/25 $
maxira
Junior Member
Junior Member
 
Messaggio: 205 di 243
Iscritto il: 24/10/2018, 16:12

Re: Integrali con errore 10^-2

Messaggioda anto_zoolander » 17/08/2019, 16:08

Anche la derivata prima è sbagliata.
Se la funzione è $arctan(e^(-x)/3)$ come fanno a spuntarti i termini $2,4$
Error 404
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 4192 di 4241
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Re: Integrali con errore 10^-2

Messaggioda maxira » 17/08/2019, 22:34

Okay, adesso mi trovo.

$ int_(0)^(log(2))f(x_0)+f'(x_0)(x-x_0)dx=log(2)*arctan(1/(3sqrt2)) $


Qui siamo certi di poterci fermare ad f' perché prima abbiamo assunto n+1=2?

$ int_(0)^(log(2))(x-log(2)/2)dx=0 $


E questa cos'è?
maxira
Junior Member
Junior Member
 
Messaggio: 206 di 243
Iscritto il: 24/10/2018, 16:12

Re: Integrali con errore 10^-2

Messaggioda anto_zoolander » 18/08/2019, 00:54

Siamo certi perché si è stimato l’errore come minore don $10^(-2)$
Quell’integrale è $int_(0)^(log(2))f’(x_0)(x-x_0)dx$; ho usato la linearità
Error 404
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 4193 di 4241
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Re: Integrali con errore 10^-2

Messaggioda maxira » 22/08/2019, 17:55

E se volessi approssimare con un errore inferiore a 0.1 l'integrale:

$ int_(0)^(1) arctan(1/x^10) dx $

come potrei minimizzare il risultato dell'integrale di (x-t)?

$ || f^(1) ||_oo int_(0)^(1) (x-t) dx $

$ || f^(1) ||_oo (1/2-t) $

Quindi ottengo una retta di equazione 1/2-t.
Quale valore di t scelgo per minimizzare?
maxira
Junior Member
Junior Member
 
Messaggio: 216 di 243
Iscritto il: 24/10/2018, 16:12

Re: Integrali con errore 10^-2

Messaggioda maxira » 25/08/2019, 17:47

Up
maxira
Junior Member
Junior Member
 
Messaggio: 231 di 243
Iscritto il: 24/10/2018, 16:12

Re: Integrali con errore 10^-2

Messaggioda anto_zoolander » 25/08/2019, 19:06

Non c'è una regola generica per fare questi conti senza un calcolatore
In questo caso usare Taylor non conviene in quanto derivare diventa un massacro a livello di conti

so che $arctan(1/x^10)<pi/2$ quindi $arctan(1/x^10)-pi/2<0$

a questo punto posso aggiungere un termine $x^n$ ottenendo $underbrace(arctan(1/x^10))_(f(x))+underbrace(x^n-pi/2)_(-p_n(x))<x^n$

la funzione $g(x)=f(x)-p_n(x)$ ha derivata $g'(x)=(nx^(n+19)+nx^(n-1)-10x^9)/(1+x^20)$
se poni $n=10$ ottieni una funzione con derivata strettamente positiva in $(0,1)$ ed essendo $g(0)=0$ si ottiene che $g$ è anche positiva pertanto

$abs(int_(0)^(1)f(x)dx-int_(0)^(1)p_10(x)dx)leq int_(0)^(1)abs(f(x)-p_10(x)dx)leq int_(0)^(1)x^10dx$

l'integrale $int_(0)^(1)x^10=1/11<1/10$

pertanto l'errore che si commette approssimando $int_(0)^(1)f(x)dx$ con $int_(0)^(1)p_10(x)dx$ è minore di $0.1$

e l'approssimazione risulta essere $int_(0)^(1)(pi/2-x^10)dx=pi/2-1/11$
Error 404
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 4217 di 4241
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Precedente

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 34 ospiti

cron