Re: sottospazi vettoriali dimostrazione

Messaggioda feddy » 14/10/2019, 20:44

Ah sì scusa pensavo all'ultima proprietà. Sì dovresti prenderlo.
Ultima modifica di feddy il 14/10/2019, 20:46, modificato 1 volta in totale.
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 2597 di 2625
Iscritto il: 26/06/2016, 00:25
Località: Austria

Re: sottospazi vettoriali dimostrazione

Messaggioda Aletzunny » 14/10/2019, 20:46

feddy ha scritto:An sì scusa pensavo all'ultima proprietà. Sì dovresti prenderlo.

Ma come faccio a dimostrarla? Non riesco
Aletzunny
Average Member
Average Member
 
Messaggio: 622 di 665
Iscritto il: 27/11/2017, 18:20

Re: sottospazi vettoriali dimostrazione

Messaggioda feddy » 14/10/2019, 20:48

$t \in RR, v=[v_1,v_2,v_3] \in \tilde{X}$. Allora $t(v_1 -2v_2 +v_3)=t \cdot 0 =0$ Quindi $tv \in \tilde{X}$
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 2598 di 2625
Iscritto il: 26/06/2016, 00:25
Località: Austria

Re: sottospazi vettoriali dimostrazione

Messaggioda Aletzunny » 14/10/2019, 20:50

Cavolo! Era semplice... mi sono perso in un bicchiere d'acqua.Grazie
Aletzunny
Average Member
Average Member
 
Messaggio: 623 di 665
Iscritto il: 27/11/2017, 18:20

Re: sottospazi vettoriali dimostrazione

Messaggioda feddy » 14/10/2019, 20:56

Di nulla.

Per la terza proprietà, prendi $v, w \in \tilde{X}$. Dunque il vettore somma è $[v_1+w_1,v_2+w_2,v_3+v_3]$. Verifico che stia in $\tilde{X}$: $v_1+w_1-2*(v_2+w_2)+v_3+w_3=v1-2*v_2+v_3 + w_1 -2*w_2+w_3$ ma poichè $v$ e $w$ stanno in $\tilde{X}$, quella sommatoria è nulla. Dunque $\tilde{X}$ è sottospazio vettoriale di $RR^3$
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 2599 di 2625
Iscritto il: 26/06/2016, 00:25
Località: Austria

Re: sottospazi vettoriali dimostrazione

Messaggioda Aletzunny » 14/10/2019, 20:59

Grazie... era giusto lo stesso se io ho fatto che
$(v+w)(X1)$=$v(X1)+w(X1)$ e quindi $v+w in X1$
Aletzunny
Average Member
Average Member
 
Messaggio: 624 di 665
Iscritto il: 27/11/2017, 18:20

Re: sottospazi vettoriali dimostrazione

Messaggioda feddy » 14/10/2019, 21:02

Ma $X_1$ (ossia uqello di partenza) non soddisfa la chiusura per somma, se era questo che volevi mostrare
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 2600 di 2625
Iscritto il: 26/06/2016, 00:25
Località: Austria

Re: sottospazi vettoriali dimostrazione

Messaggioda Aletzunny » 14/10/2019, 21:04

feddy ha scritto:Ma $X_1$ (ossia uqello di partenza) non soddisfa la chiusura per somma, se era questo che volevi mostrare


Per $X1$ intendevo il tuo esempio scusa ho sbagliato la scrittura
Aletzunny
Average Member
Average Member
 
Messaggio: 625 di 665
Iscritto il: 27/11/2017, 18:20

Re: sottospazi vettoriali dimostrazione

Messaggioda feddy » 14/10/2019, 21:05

Okay, però lo stesso non capisco la scrittura $v(X_1)$ onestamente. Ad ogni modo, il modo più "semplice" per mostrarlo è come ti ho fatto vedere, ossia usando la definizione
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 2601 di 2625
Iscritto il: 26/06/2016, 00:25
Località: Austria

Re: sottospazi vettoriali dimostrazione

Messaggioda Aletzunny » 14/10/2019, 21:07

Perfetto... grazie mille
Aletzunny
Average Member
Average Member
 
Messaggio: 626 di 665
Iscritto il: 27/11/2017, 18:20

PrecedenteProssimo

Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 11 ospiti