Potenziale a delta di Dirac

Messaggioda vitunurpo » 07/11/2019, 11:47

Ciao a tutti, ho un problema circa il calcolo del valore medio dell'energia cinetica in un problema di fisica quantistica.

Mi è data una particelle in una buca a delta di Dirac $ V(x)=-\alpha \delta(x) $ con alfa una costante positiva
Poi mi viene data la funziona d'onda
$ \psi(x)={ ( A(x+a/2) se -a/2<x<0 ),( A(-x+a/2) se 0<x<a/2 ),( 0 ):} $ e mi viene chiesto di trovare il valore medio dell'energia cinetica.
Io ho già calcolato il valore di A, costante di normalizzazione, che viene
$ A=sqrt((12/a^3)) $ .

Per calcolare $ <T> $ faccio
$ <T> = -h^2/(2m)int_(-infty)^(infty) \psi(x) (partial^2 \psi(x))/(partial x^2) dx $

La domanda è : come faccio la derivata seconda? Nelle soluzioni dà

$ (partial^2 \psi(x))/(partial x^2)=A\delta(x+a/2)-2\delta(x)+A\delta(x-a/2) $ e io non capisco perchè.
Potreste darmi un suggerimento per risolvere questo dubbio banale?
Grazie
vitunurpo
Junior Member
Junior Member
 
Messaggio: 159 di 160
Iscritto il: 06/11/2016, 12:07

Re: Potenziale a delta di Dirac

Messaggioda dRic » 07/11/2019, 16:05

Credo che tu possa scrivere la funzione invece che usando il "se" con la funzione gradino (ne devi usare 2 per esprimere i due casi). La derivata della funzione gradino è la delta di dirac. Inoltre la funzione non è definita in zero quindi per la prima legge fondamentale della fisica ci mettiamo una delta di dirac :D :D

No va beh a parte gli scherzi, non so come giustificarlo rigosamente... Spero ti possa soddisfare questa risposta.
dRic
Senior Member
Senior Member
 
Messaggio: 1031 di 1031
Iscritto il: 01/01/2017, 03:54

Re: Potenziale a delta di Dirac

Messaggioda vitunurpo » 09/11/2019, 14:31

Beh grazie lo stesso :) e' pur sempre una spiegazione u.u
vitunurpo
Junior Member
Junior Member
 
Messaggio: 160 di 160
Iscritto il: 06/11/2016, 12:07


Torna a Fisica, Fisica Matematica, Fisica applicata, Astronomia

Chi c’è in linea

Visitano il forum: Palliit e 72 ospiti